PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regression Points in Non-Intrusive Polynomial Chaos Expansion Method and D-Optimal Design

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses selected issues of uncertainty quantification in the modelling of a system containing surgical mesh used in ventral hernia repair. Uncertainties in the models occur due to variability of abdominal wall properties among others. In order to include them, a nonintrusive regression-based polynomial chaos expansion method is employed. Its accuracy depends on the choice of regression points. In the study, a relation between error of mean, standard deviation, 95th percentile and location of regression points is investigated in the models of implants with a single random variable. This approach is compared with a classic choice of points based on the D-optimality criterion.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 20 poz., rys., schem., wykr.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering
autor
  • LAME - INSA Centre Val de Loire / Univ. Tours / Univ. Orléans
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering
autor
  • LAME - INSA Centre Val de Loire / Univ. Tours / Univ. Orléans
Bibliografia
  • 1. Berveiller, M., Sudret, B., and Lemaire, M. (2006). Stochastic finite element: a non intrusive approach by regression. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, 15(1-3):81–92.
  • 2. Burnaev, E., Panin, I., and Sudret, B. (2016). Effective design for sobol indices estimation based on polynomial chaos expansions. In Symposium on Conformal and Probabilistic Prediction with Applications, pages 165–184. Springer.
  • 3 Chamoin, L., Florentin, E., Pavot, S., and Visseq, V. (2012). Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Computers & structures, 106:189–195.
  • 4. Choi, S.-K., Grandhi, R. V., Canfield, R. A., and Pettit, C. L. (2004). Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA journal, 42(6):1191–1198.
  • 5. Deeken, C. R. and Lake, S. P. (2017). Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. Journal of the mechanical behavior of biomedical materials, 74:411–427.
  • 6. Deeken, C. R., Thompson Jr, D. M., Castile, R. M., and Lake, S. P. (2014). Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. Journal of the mechanical behavior of biomedical materials, 38:6–16.
  • 7. Fedorov, V. V. (1972). Theory of optimal experiments. Elsevier.
  • 8. Fishman, G. S. (1996). Monte carlo. Springer.
  • 9. Gao, Z. and Zhou, T. (2014). On the choice of design points for least square polynomial approximations with application to uncertainty quantification. Communications in Computational Physics, 16(2):365–381.
  • 10. Ghanem, R. G. and Spanos, P. D. (1991). Stochastic Finite Element Method: A Spectral Approach. Springer.
  • 11. Isukapalli, S. S. (1999). Uncertainty analysis of transport-transformation models.
  • 12. Junge, K., Klinge, U., Prescher, A., Giboni, P., Niewiera, M., and Schumpelick, V. (2001). Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia, 5(3):113–118.
  • 13. Le Maitre, O. P., Reagan, M. T., Najm, H. N., Ghanem, R. G., and Knio, O. M. (2002). A stochastic projection method for fluid flow: II. random process. Journal of computational Physics, 181(1):9–44.
  • 14. Lubowiecka, I., Szepietowska, K., Szymczak, C., and Tomaszewska, A. (2016). A preliminary study on the optimal choice of an implant and its orientation in ventral hernia repair. Journal of Theoretical and Applied Mechanics, 54(2):411–421.
  • 15. Prasad, A. K., Ahadi, M., Thakur, B. S., and Roy, S. (2015). Accurate polynomial chaos expansion for variability analysis using optimal design of experiments. In Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2015 IEEE MTT-S International Conference on, pages 1–4. IEEE.
  • 16. Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7):964–979.
  • 17. Szymczak, C., Lubowiecka, I., Tomaszewska, A., and Śmietański, M. (2012). Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clinical Biomechanics, 27(2):105–110.
  • 18. Tomaszewska, A., Lubowiecka, I., Szymczak, C., Śmietański, M., Meronk, B., Kłosowski, P., and Bury, K. (2013). Physical and mathematical modelling of implant–fascia system in order to improve laparoscopic repair of ventral hernia. Clinical Biomechanics, 28(7):743–751.
  • 19. Xiu, D. and Karniadakis, G. E. (2002). The wiener–askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing, 24(2):619–644.
  • 20. Zein, S., Colson, B., and Glineur, F. (2013). An efficient sampling method for regression-based polynomial chaos expansion. Communications in computational physics, 13(4):1173–1188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40f291b1-e33b-4c3f-a984-7be2fb38bf69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.