PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zastosowanie związków kompleksowych rutenu, złota, wanadu, chromu, bizmutu, technetu w medycynie. Cz. 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of coordination compounds of ruthenium, gold, vanadium, chromium, bismuth, technetium in medicine. Part 2
Języki publikacji
PL
Abstrakty
EN
In this review, the most important complex compounds of ruthenium, gold, vanadium, chromium, bismuth, technetium were selected, and then their most important applications were described in medicine. Ruthenium has been identified as a metal with potential medical use, useful in cancer chemotherapy. The possibility of using its chemical behavior by developing complexes activated for cytotoxic activity through a mechanism of reduction in tumor tissue was discovered. Among the new anti-cancer drugs based on complex compounds, gold compounds have gained a lot of interest. This is due to their strong inhibitory effect on the growth of cancer cells and the observation that many compounds inhibit the enzyme thioredoxin reductase. This enzyme is important for the proliferation of cancerous tissues, and its inhibition is associated with the release of anti-mitochondrial effects. Clinical tests have shown that vanadium compounds can be used as anti-diabetic drugs with low toxicity. However, the therapeutic concentration range is very narrow, just a few micromoles of the compound are enough to cause apoptosis, necrosis and inflammation of healthy cells. Chromium improves the glucose system in people with hypoglycemia or hyperglycemia. Vanadium compounds mainly used to create potential drugs are inorganic compounds such as vanadates(V), vanadyl cation(IV), vanadium oxide(V) and a number of compounds containing organic ligands. Among the metal complexes, chromium(III) picolinate has successfully become a nutrient used to prevent high blood sugar levels. One of the most commonly used bismuth(III) compounds is bismuth subsalicylate. It is one of the few bismuth compounds regularly used to treat various gastrointestinal complaints, including duodenal ulcers. 99mTc injected into the body, depending on its chemical form and molecular structure, concentrates in the examined organ and emits a quantum that allows imaging of the organ through flat scintigraphic or emission processes. The role of complex compounds in medical imaging is largely based on the creation of radiopharmaceuticals for early detection of diseases and cancer radiotherapy. Radiopharmaceuticals are radionuclide-containing drugs and are routinely used in nuclear medicine to diagnose or treat a variety of diseases.
Rocznik
Strony
823--851
Opis fizyczny
Bibliogr. 107 poz., schem
Twórcy
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] E.S. Antonarakis, A. Emadi, Cancer Chemoth. Pharm., 2010, 66, 1.
  • [2] E. Reisner, V.B. Arion, B.K. Keppler, Inorg. Chim. Acta, 2008, 361, 1569.
  • [3] F. Kratz, L. Messori, J. Inorg. Biochem., 1993, 49, 79.
  • [4] G. Sava, A. Bergamo, Int. J. Oncol., 2000, 17, 353.
  • [5] C.G. Hartinger, S. Zorbas-Seifried, M.A. Jakupec, J. Inorga. Biochem., 2006, 100, 891.
  • [6] L.J. Boerner, J.M. Zaleski, Curr. Opin. Chem. Biol., 2005, 9, 135.
  • [7] J.M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, Clin. Cancer Res., 2004, 10, 3717.
  • [8] E.E. Brouwers, M.M. Tibben, H. Rosing, Rapid Commun. Mass Sp., 2007, 21, 521.
  • [9] N. Graf, Adv. Drug Deliv. Rev., 2012, 64, 993.
  • [10] P.J. Dyson, G. Sava, Dalton Trans., 2006, 1929.
  • [11] C.X. Zhang, S.J. Lippard, Curr. Opin. Chem. Biol., 2003, 7, 481.
  • [12] A. Bergamo, G. Sava, Dalton Trans., 2007, 1267.
  • [13] E. Antonarakis, A. Emadi, Cancer Chemoth. Pharm., 2010, 66, 1.
  • [14] E. Schuh, C. Pflüger, A. Citta, J. Med. Chem., 2012, 55, 5518.
  • [15] L. Messori, G. Marcon, Met. Ions Biol. Syst., 2004, 42, 385.
  • [16] M.P. Rigobello, L. Messori, G. Marcon, J. Inorg. Biochem., 2004, 98, 1634.
  • [17] L. Cattaruzza, D. Fregona, M. Mongiat, Int. J. Cancer, 2011, 1, 206.
  • [18] C. Marzano, L. Ronconi, F. Chiara, Int. J. Cancer, 2011, 2, 487.
  • [19] V. Hellberg, I. Wallin, S. Eriksson, J. Natl. Cancer I., 2009, 101, 37.
  • [20] S.D. Bernal, J.A. Speak, K. Boeheim, Mol. Cell. Biochem., 1990, 95, 61.
  • [21] K. Kawai, N. Kamatani, E. Georges, J. Biol. Chem., 1990, 265, 13137.
  • [22] M. Kartalou, J.M. Essigmann, Mutat.Res., 2001, 478, 23.
  • [23] B. Morris, S. MacNeil, K. Stanley, T. Gray, R. Fraser, J. Endocrinol., 1993, 139, 339.
  • [24] R. Anderson, Diabetes Metab., 2000, 26, 22.
  • [25] J. Vincent, J. Trace Elem. Med. Bio., 2014, 06, 20.
  • [26] S. Lewicki, R. Zdanowski, M. Krzyżowska, A. Lewicka , В. Dębski, Ann. Agr. Env. Med., 2014, 21(2), 331.
  • [27] J. Vincent, Biol. Trace Elem. Res., 2004, 99, 1.
  • [28] J. Drzeżdżon, J. Malinowski, D. Zych, D. Jacewicz, Wiad. Chem., 2019, 73 (11-12), 753.
  • [29] P. Srivastava, A.K. Saxena, R.K. Kale, N.Z. Baquer, Res. Commun. Chem. Pathol. Pharmacol., 1993, 3, 283.
  • [30] N. Venkatesan, A. Aviden, M. B. Davidson, Diabetes, 1991, 40, 492.
  • [31] S. Verma, M.C. Cam, J.H. Mcneill, J. Am. Coll. Nutr., 1998, 17, 11.
  • [32] J. Vincent, Dalton Trans., 2010, 39, 3787.
  • [33] A. Levina, P. Lay, Chem. Res. Toxicol., 2008, 21, 563.
  • [34] E. Gniazdowska, P. Koźmiński, L. Fuks, J. Radioanal. Nuci. Chem., 2013, 298, 1171.
  • [35] E. Gniazdowska, P. Koźmiński, К. Bańkowski, P. Ochman, J. Med. Chem., 2014, 57, 5986.
  • [36] E. Gniazdowska, P. Koźmiński, K. Bańkowski, W. Łuniewski, L. Królicki, Eur. J. Med. Chem., 2014, 87, 493.
  • [37] E. Alessio, G. Mestronia, A. Bergamo G. Sava, Curr. Top. Med. Chem., 2004, 4, 1525.
  • [38] I. Kostova, Curr. Med. Chem., 2006, 13, 1085.
  • [39] F. Lentz, A. Drescher, A. Lindauera, M. Henke, R.A. Hilger, Ch.G. Hartinger, M.E. Scheulen, Ch. Dittrich, B.K. Keppler, U. Jaehde, Anti-Cancer Drug., 2009, 20, 97.
  • [40] T. Pieper, K. Borsky, B.K. Keppler, Metallopharmaceuticals I, 1999, 171.
  • [41] C.G. Hartinger, M.A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P.J. Dyson, B.K. Keppler, Chem. Biodivers, 2017, 5, 2140.
  • [42] E. Alessio, Eur. J. Inorg. Chem., 2017, 1549.
  • [43] A. Gilewska, J. Masternak, K. Kazimierczuk, J. Trynda, J. Wietrzyk, B. Barszcz, J. Mol. Struct., 2018, 1155, 288.
  • [44] J. Masternak, A. Gilewska, K. Kazimierczuk, O.V. Khavryuchenko, J. Trynda, J. Wietrzyk, B. Barszcz, Polyhedron, 2018, 154, 263.
  • [45] Y. Yang, L.G. Z. Tian, X. Liu, Y. Gong, H. Zheng, X. Ge, Z. Liu, Chem. Asian. J., 2018, 13, 2923.
  • [46] S.N.R. Donthireddy, P.M. Illam, A. Rit, Inorg. Chem., 2020, 59, 1835.
  • [47] E. Alessio, G. Mestroni, G. Nardin, W. M. Attia, M.Calligaris, G. Sava, S. Zorzets, Inorg. Chem., 1998, 27, 4099.
  • [48] R. Yaseen, A. Alshwafy, A.A. Dahy, I. Warad, M. Mahfouz, J. Coord. Chem., 2019, 72, 2200.
  • [49] J. Vajs, A. Pevec, M. Gazvoda, D. Urankar, E. Goreshnik, S. Polane, J. Košmrlj, Acta Chim. Slov., 2017, 64, 763.
  • [50] I. Ott, Coord. Chem. Rev., 2009, 253,1670.
  • [51] L. Messori, L. Marchetti, L. Massai, F. Scaletti, A. Guerri, I. Landini, S. Nobili, G. Perrone, E. Mini, P. Leoni, M. Pasquali, Ch. Gabbiani, Inorg. Chem., 2013, 53, 2396.
  • [52] T. Onodera, I. Momose, M. Kawada, Chem. Pharm. Bull., 2018, 67, 186.
  • [53] L. Messori, F. Abbate, G. Marcon, P. Orioli, M. Fontani, E. Mini, T. Mazzei, S. Carotti, T. O’Connell, P. Zanello, J. Med. Chem., 2000, 43, 3541.
  • [54] A.S. Abu-Surrah, M. Kettunem, Curr. Med. Chem., 2006, 13, 1337.
  • [55] J.H. Kim, E. Reeder, S. Parkin, S.G. Awuah, Sci. Rep., 2019, 9, 12335.
  • [56] V. Fernández-Moreira, R.P. Herrera, M.C. Gimeno, Pure Appl. Chem., 2019, 91, 247.
  • [57] R. Visbal, V. Fernández-Moreira, I. Marzo, A. Laguna, M.C. Gimeno. Dalton Trans., 2016, 45, 15026.
  • [58] H. Goitia, A. Laguna, M.C. Gimeno. Inorg. Chim. Acta, 2018, 53, 475.
  • [59] A. Gutiérrez, I. Marzo, C. Cativiela, A. Laguna, M.C. Gimeno. Chem. Eur. J., 2015, 21, 11088.
  • [60] E.B. Bauer, M.A. Bernd, M. Schütz, J. Oberkofler, A. Pöthig, R.M. Reich, Dalton Trans., 2019, 48, 16651.
  • [61] G. Gu, C. Chen, Q. Wang, Z. Gao, M. Xu, J. Appl. Spectros., 2019, 86, 618.
  • [62] J. Korbecki, I. Baranowska-Bosiacka, I. Gutowska, D. Chlubek, Postepy Biochem., 2016, 62, 60.
  • [63] K.G. Peters, M.G. Davis, B. W. Howard, M. Pokross, V. Rastogi, C. Diven, K.D. Greis, E. Eby-Wilkens, M. Maier, A. Evdokimov, S. Soper, F. Genbauffe, J. Inorg. Biochem., 2003, 96, 321.
  • [64] J.C. Pessoa, S. Etcheverry, D. Gambino, Coor. Chem. Rev., 2015, 301-302, 24.
  • [65] A.K. Srivastava, M.Z. Mehdi, Diabet. Med., 2005, 22, 2.
  • [66] A. Majid, A. Adam, A. M. Naglah, M.A. Omar, M.S. Refat, Int. J. Immun. Pharm., 2017, 30, 272.
  • [67] M. Abaszadeh, M. Seifi, S.Y. Ebrahimipour, B. Chem. Soc. Ethiopia, 2016, 30, 253.
  • [68] S.Y. Li, W.Q. Zhai, Z.W. Li, A. Li, Y.M. Jiang, W. Li, Rus. J. Coord. Chem., 2018, 44, 701.
  • [69] X.Q. Cong, M.H. Piao, Y. Li, L. Xie, Y. Liu Bis, Biol. Trace Elem. Res., 2016, 173, 390.
  • [70] T. Jakusch, T. Kiss, Coord. Chem. Rev., 2017, 351, 118.
  • [71] S. Torabi, M. Mohammadi, M. Shirvani, Trends Pharm.Scien. 2018, 4, 87.
  • [72] X.F. Chen, T.R. Wang, Z. Ma, Y. Yu, L. Tang, L.Y. Jin, G.H. Sheng, H.L. Zhu. Polyhedron, 2017, 137, 321.
  • [73] J.B. Vincent, Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome, 2018, 2, 365.
  • [74] E. Król, Z. Krejpcio, Diabetologia Praktyczna, 2008, 9, 168.
  • [75] T. Kośla, I. Lasocka, E.M. Skibniewska, M. Kołnierzak, M. Skibniewski, Medycyna Weterynaryjna, 2018, 74(9), 560.
  • [76] R. Markham, J.D. Smith, J. Biochem, E.A. Peterson, Arch. Biochem., 1959, 85, 292.
  • [77] N.V. Perkhulyn , B. M.Rovenko , T.V. Zvarych , O.V. Lushchak , J. M.Storey, K.B. Storey, V.I. Lushcha, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 167, 74.
  • [78] N. Yasarawan, K. Thipyapong, S. Sirichai, V. Ruangpornvisut, J. Mol. Struct., 2013, 1031,144.
  • [79] O. Tsave , M.P. Yavropoulou, M. Kafantari , C. Gabriel, J.G. Yovos , A. Salifoglou, J. Inorg. Biochem., 2016, 163, 323.
  • [80] S.M. El-Megharbel, J. Microb. Biochem. Technol., 2015, 7, 2.
  • [81] H.J. Lunk, Chem.Texts., 2015, 1, 6.
  • [82] H. Sun, P.J. Sadlerl, Metallopharmaceuticals II, 1999, 159.
  • [83] L. Zhang, S.B. Mulrooney, A.F.K. Leung, Y. Zeng, B.B.C. Ko1, R.P. Hausinger, H. Sun Biometals, 2005, 19, 503.
  • [84] P.J. Sadler, H. Sun, J. Chem. Soc., 1995, 24, 4287.
  • [85] J.R. Lambert, P. Midollo, Alimen. Pharmacol. Ther., 1997, 11, 27.
  • [86] P.C. Andrews, G.B. Deacon, C.M. Forsyth, P.C. Junk, I. Kumar, M. Maguir, Angew. Chem., 2006, 45, 5638.
  • [87] A. Sigiel, H. Sigiel, Marcel Dekker Inc, 2004, 41.
  • [88] K. Schwochau, Angew. Chem., 1994, 33, 2258.
  • [89] D.M. Keogan, D.M. Griffith, Molecules, 2014, 19, 15258.
  • [90] Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, J. Coord. Chem., 2015, 68, 379.
  • [91] S. Jurisson, D. Berning, W. Jia, O. Ma, Chem. Rev., 1993, 93, 1137.
  • [92] J.R. Thornback, M. Deblaton, G.F. Morgan, US Patent 1994, 5, 276, 147.
  • [93] P. Martini, M. Pasquali, A. Boschi, L. Uccelli, M. Giganti, A. Duatti, Molecules, 2018, 23,
  • [94] D. Papagiannopoulou, J. Labelled Comp. Radiopharm., 2017, 60, 502.
  • [95] E.M. Hahn, A. Casini, E. Fritz, F.E. Kühn, Coord. Chem. Rev., 2014, 276, 97.
  • [96] N.C. Okoye, J.E. Baumeister, F.N. Khosroshahi, H.M. Hennkens, S.S. Jurisson, Radiochim. Acta, 2019, 107, 9.
  • [97] S. Liu, Chem. Soc. Rev., 2004, 33, 445.
  • [98] P. Lecoq, M. Korzhik, Ieee Trans. Nucl. Sci., 2002, 49, 4.
  • [99] S.D. MacPherson, K. Fung, B.E. Cook, L.C. Francesconiac, B.M. Zeglis, Dalton Trans., 2019, 39, 14547.
  • [100] T.I. Kostelnik, C. Orvig, Chem. Rev., 2019, 119, 902.
  • [101] T. Kniess, M. Laube, F. Wüst and J. Pietzsch, Dalton Trans., 2017, 46, 14435.
  • [102] M. Brandt, J. Cardinale, M.L. Aulsebrook, G. Gasser, T.L. Mindt, J. Nucl. Med., 2018, 59, 1500.
  • [103] Z. Keidar, E. Solomonov, R. Karry, A. Frenkel, O. Israel, M. Mekel, Mol. Imag. Biol., 2017, 19, 265.
  • [104] Z.Q. Zhao, M. Liu, W. Fang, S. Liu, J. Med. Chem., 2018, 61, 319.
  • [105] M. Liu, Z.Q. Zhao, W. Fang, S. Liu, Bioconj. Chem., 2017, 28, 2998.
  • [106] A. Mirzaei, A.R. Jalilian, G. Shabani, A. Fakhari, M. Akhlaghi, D. Beiki, J. Radioanal. Nucl. Chem., 2016, 307, 725.
  • [107] K.D. Mjos, C. Orvig, Chem. Rev., 2014, 114, 4540.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40e99eb6-e72f-4a31-b49f-ecece91f28e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.