Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article we define Musielak−Orlicz−Sobolev spaces on arbitrary metric spaces with finite diameter and equipped with finite, positive Borel regular outer measure. We employ a Hajlasz definition, which uses a pointwise maximal inequality. We prove that these spaces are Banach, that the Poincaré inequality holds, and that the Lipschitz functions are dense. We develop a capacity theory based on these spaces. We study basic properties of capacity and several convergence results. As an application, we prove that each Musielak−Orlicz−Sobolev function has a quasi-continuous representative.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
169--183
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Ecole Normale Superieure, B.P 5206, Ben Souda, Fez, Morocco
autor
- Faculty Poly-Disciplinary of Taza, Laboratory, LSI, Morocco
autor
- SMBA University, Faculty of Science and Technique, Fez. Laboratory, LSI, Taza, Morocco
Bibliografia
- [1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer 1999.
- [2] N. Aissaoui and A. Benkirane, Potentiel non linéaire dans les espaces d’Orlicz, Ann. Sci. Math. Québec (1994), 105-118.
- [3] N. Aissaoui and A. Benkirane, Capacity dans les epaces d’Orlicz, Ann. Sci. Math. Québec (1995).
- [4] N. Aissaoui, Strongly nonlinear potential theory on metric spaces, Abstr. Appl. Anal., posted on 2002, 357-374, DOI 10.1155/S1085337502203024.
- [5] A. Benkirane and M. Ould Mohamedhen Val, An approximation theorem in Musielak-Orlicz-Sobolev spaces, Comment. Math. (2011), 109-120.
- [6] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., posted on 2005, 657-700, DOI 10.1016/j.bulsci.2003.10.003.
- [7] L. Diening, P. Harjulehto, P. Hasto, and M. Ruzieka, Lebesgue and Sobolev spaces with variable exponents, SPIN Springer internal project number, posted on 2010, DOI 10.1007/978-3-642-18363-8.
- [8] P. Hajlasz, Sobolev space on arbitry metric space, Potential Anal., posted on 1996, 403-415, DOI 10.1007/BF00275475.
- [9] P. Harjulehto, P. Hasto, and M. Pere, Variable exponent Sobolev spaces on metric measure spaces, Funct. Approx. Comment. Math. 36 (2006), 79-94, DOI 10.7169/facm/1229616443.
- [10] J. Kinnunen and O. Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), 367-382.
- [11] E. J. McShane, Extension of range of functions, Bull. Am. Math. Soc., posted on 1934, 837-842, DOI 10.1090/S0002-9904-1934-05978-0.
- [12] J. Musielak, Orlicz Spaces and Modular Spaces, Berlin-Heidelberg 1983, DOI 10.1007/BFb0072210.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40e8ecd0-ffca-4172-8f7f-13e2cce03472