PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grape production assessment using surface and subsurface drip irrigation methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study involved experimental work implemented from April 2014 until March 2017. Its purpose was to observe grape production quality parameters, such as yield, water productivity, berry size and bio-mass. Different irrigation methods, such as drip irrigation (DI), drip irrigation with plastic mulching (DIPM), drip irrigation with organic mulching (DIOM), subsurface irrigation with stone column (SISC), subsurface irrigation with mud pot (SIMP), and subsurface irrigation with plastic bottles (SIPB) have been used during the experimental work. The crop has been irrigated following the CROPWAT-8.0 model developed by the FAO. Climate parameters are obtained from the automatic weather station located near the experimental field. Based on experimental results and analyses, it has been observed that the drip irrigation with the plastic mulching method is the best for irrigation in terms of the grape yield comparing with all other methods due to its highest productivity of 35–40%. Subsurface irrigation with the plastic bottle method is found to be suitable as it gives 20% higher yield than the traditional drip irrigation method. The SIPB method shows the cost-benefit ratio of 112.3, whereas the DIPM method had the ratio of 36.6. Based on the cost-benefit analysis, it is concluded that the SIPB method is economically more viable as compared with all other methods. Hence, based on the findings, it is recommended to use drip irrigation with a plastic mulching and drip irrigation with a plastic bottle as the best options to achieve grape productivity while using minimum water.
Wydawca
Rocznik
Tom
Strony
169--178
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Savitribai Phule Pune University, NDMVPS KBT College of Engineering, Nashik, Udoji Maratha Boarding Campus, 422013, Nashik, India
  • Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
Bibliografia
  • ADSULE P.G., YADAV D.S., UPADHYAY A., SATISHA J., SHARMA A.K. 2013. Good agriculture practices for production of quality table grapes [online]. Pune. National Research Centre for Grapes pp. 57. [Access 10.01.2020]. Available at: https://nrcgrapes.icar.gov.in/zipfiles/GAPTa-bleGrapes18Feb2013.pdf
  • ALLEN R., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome, Italy pp. 17–27.
  • AYARS J. E., PHENEB C.J., HUTMACHER R.B. 1999. Subsurface drip irrigation of row crops: A review of 15 years of research at the water management research laboratory. Agricultural Water Management. Vol. 42. Iss. 1 pp. 1–27. DOI 10.1016/ S0378-3774(99)00025-6.
  • BAGGIOLINI M. 1952. Les stades repères dans le développement annuel de la vigne el leur utilisation 477 practique [The mile-stones in the annual development of the vine and their practical use 477]. Revue romande d'agriculture et de viticulture. Vol. 8 p. 4–6.
  • BARROSO J.M., POMBEIRO L., RATO A.E. 2017. Impacts of crop level, soil and irrigation management in grape berries of cv ‘Trincadeira’ (Vitis vinifera L.). Journal of Wine Research. Vol. 28. Iss. 1 p. 1–12. DOI 10.1080/09571264.2016.1238350.
  • CANCELA J.J., TRIGO-CÓRDOBA E., MARTÍNEZ E.M., REY B.J., BOUZAS-CID Y., FANDIÑO M., MIRÁS-AVALOS J.M. 2016. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agricultural Water Management. Vol. 170 p. 99–109. DOI 10.1016/j.agwat. 2016.01.004.
  • CHATURVEDI S., JAMES T. C., SAHA S., SHAW P. 2019. Introduction: Sustainable development goals and India. In: 2030 Agenda and India: Moving from quantity to quality. Eds. S. Chaturvedi, T.C. James, S. Saha, P. Shaw. Singapore. Springer p. 1–13.
  • CHAVES M.M., ZARROUK O., FRANCISCO R., COSTA J.M., SANTOS T., REGALADO A.P., RODRIGUES M.L., LOPES C.M. 2010. Grapevine under deficit irrigation: Hints from physiological and molecular data. Annals Botany. Vol. 105. Iss. 5 pp. 661–676. DOI 10.1093/aob/mcq030.
  • CONESA M.R., NATALIA F., JOSÉ M., ROSA D.L. 2015. Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ʽCrimson Seedlessʼ table grapes. Agricultural Water Management. Vol. 163 p. 9–18. DOI 10.1016/j.agwat.2015.08.026.
  • FAO 1998. CROPWAT [online]. Geneva. Food and Agriculture Organization. [Access 10.01.2020]. Available at: http://www.fao.org/land-water/databases-and-software/crop-wat/en/
  • FERERES E., EVANS R.G. 2006. Irrigation of fruit trees and vines: An introduction. Irrigation Science. Vol. 24. Iss. 2 p. 55–57. DOI 10.1007/s00271-005-0019-3.
  • GARUDKAR A.S., RASTOGI A.K., ELDHO T.I., GORANTIWAR S.D. 2011. Optimal reservoir release policy considering heterogeneity of command area of elitist genetic algorithm. Journal of Water Resource Management. Vol. 25 p. 3863–3881. DOI 10.1007/s11269-011-9892-0.
  • GHAMARNIA H., ARJI I., SEPEHRI S., NOROZPOUR S., KHODAEI E. 2011. Evaluation and comparison of drip and conventional irrigation methods on sugar beets in a semiarid region. Journal of Irrigation and Drainage Engineering. Vol. 138. Iss. 1 p. 90–97. DOI 10.1061/(ASCE)IR.1943-4774.0000362.
  • GUPTA S.G. 2018. Fundamental of statistics. Himalaya Publishing House. ISBN 9350517698 pp. 1234.
  • INTRIGLIOLO D.S., LIZAMA V., GARCÍA-ESPARZA M.J., ABRIS-QUETA I., ÁLVAREZ I. 2016. Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agricultural Water Management. Vol. 170 p. 110–119. DOI 10.1016/j.agwat.2015. 10.020.
  • INTRIGLIOLO D.S., PÉREZ D., RISCO D. YEVES A., CASTEL J.R. 2012. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science. Vol. 30 p. 339–349. DOI 10.1007/s00271-012-0354-0.
  • IPCC 2007. Climate change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team. Eds. R.K. Pachauri, A. Reisinger]. Geneva, Switzerland. Intergovernmental Panel on Climate Change. ISBN 92-9169-122-4 pp. 104. DOI 10.1017/CBO9780511546 013.
  • KADBHANE S.J., MANEKAR V.L. 2016. An experimental study of the surface and subsurface irrigation methods with respect to soil moisture on grape yard. Journal of Water and Land Development. Vol. 31 p. 73–85. DOI 10.1515/jwld-2016-0038.
  • KADBHANE S.J., MANEKAR V.L. 2017. An experimental study on the grape orchard: Effects comparison of two irrigation systems. Journal of Water and Land Development. Vol. 32 p. 41–51. DOI 10.1515/jwld-2017-0005.
  • MANGALA R. 2006. Handbook of agriculture. New Delhi. Indian Council of Agriculture Research. ISBN 81-7164-050-8 pp. 1618.
  • MARTÍNEZ J., RECA J. 2014. Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method. Journal of Irrigation and Drainage Engineering. Vol. 745. Iss. 1 p. 733–743. DOI 10.1061/(ASCE)IR.1943-4774. 0000745.
  • MATHEWS M.A., ANDERSON M.M. 1989. Reproductive development in grape (Vitis vinifera): Responses to seasonal water deficits. American Journal of Ecology and Viticulture. Vol. 40 p. 52–60.
  • MEHTA B.K., AKIRA G. 1992. Design and operation of on-farm irrigation ponds. Journal of Irrigation and Drainage Engineering. Vol. 118. Iss. 5 p. 1388–1403. DOI 10.1061/(ASCE)0733-9437(1992)118:5(659).
  • NETZER Y., YAO C.R., SHENKER M., BRAVDO B.A., SCHWARTZ A. 2009. Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrigation Science. Vol. 27 p. 109–120. DOI 10.1007/s00271-008-0124-1.
  • NGIGI S.N., SAVENIJE H.H.G.., THOME J.N., ROCKSTRÖM J., PENNING DE VRIES F.W.T. 2005. Agro-hydrological evaluation of on-farm rainwater storage systems for supplemental irrigation in Laikipia district Kenya. Agriculture Water Management. Vol. 73 p. 21–41. DOI 10.1016/j.agwat.2004.09.021.
  • PERALBO-MOLINA Á., CASTRO M. 2013. Potential of residues from the Mediterranean agriculture and agri-food industry. Trends Food Science Technology. Vol. 32 p. 16–24. DOI 10.1016/ j.tifs. 2013.03.007.
  • PÉREZ E.M.M., SANJURJO B.J.R., BEIRO M.F., BARRIO J.J.C. 2016. Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soil-plant water relationships, cumulative effects and productivity. Spanish Journal of Agricultural Research. Vol. 14. Iss. 1 p. e1202. DOI 10.5424/sjar/2016141-7534.
  • PÉREZ-ESCAMILLA R. 2017. Food security and the 2015–2030 sustainable development goals: From human to planetary health: Perspectives and opinions. Current Developments in Nutrition. Vol. 1. Iss. 7, e000513. DOI 10.3945/cdn.117.000513.
  • PHOGAT V., SKEWES M.A., MCCARTHY M.G., COX J.W., ŠIMŮNEK J., PETRIE P.R. 2017. Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agricultural Water Management. Vol. 180 p. 22–34. DOI 10.1016/j.agwat.2016.10.016.
  • ROBY G., MATTHEWS M.A. 2004. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or underwater deficit. Australian Journal of Grape and Wine Research. Vol. 10 p. 74–82. DOI 10.1111/j.1755-0238.2004.tb00009.x.
  • SAVI T., PETRUZZELLIS F., MARTELLOS S., STENNI B., DAL BORGO A., ZINI L., LISJAK K., NARDINI A. 2018. Vineyard water relations in a karstic area: deep roots and irrigation management. Agriculture, Ecosystems & Environment. Vol. 263 p. 53–59. DOI 10.1016/j.agee.2018.05.009.
  • SIVILOTTI P., BONETTO C., PALADIN M., PETERLUNGER E. 2005. Ef-fect of soil moisture availability on merlot: From leaf water potential to the grape composition. American Journal of Ecology and Viticulture. Vol. 56 p. 9–18.
  • SRINIAS C.V., MURTY VITTAL K.P.R., MURTY KRISHNA Y.V.N. 2012. Identification of arid and drought prone areas from remote sensing based land surface parameters – a study from a tropical region, Maharashtra, India. Asian Journal of Geoinformatics. Vol. 12. Iss. 3 p. 1–16.
  • STEVENS R.M., PECH J.M., GIBBERD M.R., WALKER R.R., JONES J.A., TAYLOR J., NICHOLAS P.R. 2008. Effect of reduced irrigation on growth, yield, ripening rates and water relations of Chardonnay vines grafted to five rootstocks. Australian Journal of Grape and Wine Research. Vol. 14. Iss. 3 p. 177–190. DOI 10.1111/j.1755-0238.2008.00018.x.
  • TEHRANI M.M., KAMGAR-HAGHIGHI A.A., RAZZAGHI F., SEPASKHAH A.R., ZAND-PARSA S., ESHGHI S. 2016. Physiological and yield responses of rainfed grapevine under different supplemental irrigation regimes in Fars province, Iran. Scientia Horticulturae. Vol. 202 p. 133–141. DOI 10.1016/j.scienta. 2016.02.036.
  • THEIB O., AHMED H. 2006. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management. Vol. 80(1–3) p. 57–73. DOI 10.1016/j.agwat.2005. 07.004.
  • WILLIAMS G.D., FAUTLEY R.A., JONES K.H., STEWART R.B., WHEATON E.E. 1988. Estimating effects of climatic change on agriculture in Saskatchewan, Canada. In: The impact of climatic variations on agriculture. Vol. 1. Assessments in cool temperate and cold regions.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40e55e87-57df-44e3-8ae1-ea15fa004a98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.