PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ hiperoksji i hiperbarii na ekspresję białek szoku cieplnego i aktywność syntazy tlenku azotu – przegląd badań

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of hyperoxia on heat shock proteins expression and nitric oxide synthase activity – the review
Języki publikacji
PL EN
Abstrakty
PL
Przebywanie w środowisku o zwiększonej zawartości tlenu (wyższym ciśnieniu parcjalnym tlenu, pO2) i pod zwiększonym ciśnieniem (hiperbaria) prowadzi do nasilenia stresu oksydacyjnego. Reaktywne formy tlenu (ROS) uszkadzają cząsteczki białek, kwasów nukleinowych, powodują oksydację lipidów i zaangażowane są w rozwój wielu chorób m.in. układu krążenia, chorób neurodegeneracyjnych i in. Istnieją mechanizmy ochrony przed niekorzystnymi skutkami stresu oksydacyjnego. Należą do nich układy enzymatyczne i nieenzymatyczne. Do tych ostatnich zaliczają się m.in. białka szoku cieplnego (HSP). Dokładna ich rola i mechanizm działania są intensywnie badane w ostatnich latach. Hiperoksja i hiperbaria wpływa także na ekspresję i aktywność syntazy tlenku azotu (NOS). Jej produkt – tlenek azotu (NO) może reagować z reaktywnymi formami tlenu i przyczyniać się do rozwoju stresu nitrozacyjnego. NOS występuje w postaci izoform w różnych tkankach i w różny sposób reagujących na omawiane czynniki. Autorzy dokonali krótkiego przeglądu badań określających wpływ hiperoksji i hiperbarii na ekspresję HSP i aktywność NOS.
EN
Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2) and an increased pressure (hyperbaric conditions) leads to an intensification of oxidative stress. Reactive oxygen species (ROS) damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP). Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS). Its product - nitrogen oxide (NO) can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • DiaLab Laboratoria Medyczne, Wrocław
  • Katedra i Zakład Chemii Środków Spożywczych, Collegium Medicum im. L. Rydygiera, Bydgoszcz
  • Wojskowy Instytut Medyczny, Zakład Medycyny Morskiej i Hiperbarycznej, Gdynia
Bibliografia
  • 1. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A. 2005 9;102(32):11131-6;
  • 2. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995;27(6):583-96;
  • 3. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):1005-28;
  • 4. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145-58;
  • 5. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26;
  • 6. Neuzil J, Gebicki JM, Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993;293:601-6;
  • 7. Macario AJL, Conway de Macario E. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 2007;12:2588–600;
  • 8. Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986;55:1151–1191;
  • 9. M.P. Mayer, B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci. 2005;62:670–684;
  • 10. Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T. Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 2010;80:920–31;
  • 11. Jee H. Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil. 2016;12(4):255-9;
  • 12. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22:1547-1559;
  • 13. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37;
  • 14. Dennog C, Radermacher P, Barnett YA, Speit G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res. 1999;428 (1-2):83-9;
  • 15. Ueng SW, Yuan LJ, Lin SS, Niu CC, Chan YS, Wang IC, Yang CY, Chen WJ. Hyperbaric oxygen treatment prevents nitric oxide-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70. J Orthop Res. 2013;31(3):376-84;
  • 16. Ni XX, Ni M, Fan DF, Sun Q, Kang ZM, Cai ZY, Liu Y, Liu K, Li RP, Xu WG. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats. Exp Biol Med (Maywood). 2013;238(1):12-22;
  • 17. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990;15:393;
  • 18. Ghosh A, Chawla-Sarkar M, Stuehr DJ. Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 2011;25:2049–60;
  • 19. Huang G, Diao J, Yi H, Xu L, Xu J, Xu W. Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons. Redox Biol. 2016;10:108-118;
  • 20. Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008;10:1767-1812;
  • 21. S. Tsuchihashi, C. Fondevila, J.W. Kupiec-Weglinski, Heme oxygenase system in ischemia and reperfusion injury, Ann. Transplant. 9 (2004) 84–87;
  • 22. Huang G, Xu J, Xu L, Wang S, Li R, Liu K, Zheng J, Cai Z, Zhang K, Luo Y, Xu W. Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons. PLoS One. 2014;9(1):e85967;
  • 23. Lin CD, Wei IH, Lai CH, Hsia TC, Kao MC, Tsai MH, Wu CH, Tsai MH. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase. BMC Neurosci. 2011;12:21;
  • 24. Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE. Hyperoxic and hyperbaricinduced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res. 2006;72(1):143-51;
  • 25. Chavko M, Auker CR, McCarron RM. Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide. 2003;9(1):18-23;
  • 26. Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, Wang WZ, Zamboni WA. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res. 2013;183(1):355-61;
  • 27. Alcaraz-García MJ, Albaladejo MD, Acevedo C, Olea A, Zamora S, Martínez P, Parra S. Effects of hyperoxia on biomarkers of oxidative stress in closed-circuit oxygen military divers. J Physiol Biochem. 2008;64(2):135-41;
  • 28. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;
  • 29. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009;61(4):310-8;
  • 30. Kaźmierczuk A. Kiliańska ZM. Plejotropowa aktywność białek szoku cieplnego. Postepy Hig Med. Dosw. 2009;63:502-521;
  • 31. Takayama S, Reed J, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003;22:9041-9047
  • 32. Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 2007;581:3758-3769;
  • 33. Reeg S, Jung T, Castro JP, Davies KJ, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153-166;
  • 34. Daugaard M, Rohde M, JäätteläM. The heat shockk proteinę 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007;581:3702-3710;
  • 35. S.H. Park, N.Bolender, F.Eisele, Z.Kostova, J.Takeuchi, P.Coffino, et al. The Cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 2007,18(1):153–165;
  • 36. M. Conconi, I.Petropoulos, I.Emod, E.Turlin, F.Biville, B.Friguet, Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem. J. 1998,333:407–415;
  • 37. Laskowska E. Małe białka szoku termicznego – rola w apoptozie, karcenogenezie i chorobach związanych z agregacją białek. Post. Biochem. 2007;53:19-26;
  • 38. Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal. 2005;7:414-422;
  • 39. Seixas E, Gozzelino R, Chora A, Ferreira A, Silva G, Larsen R, Rebelo S, Penido C, Smith NR, Coutinho A, Soares MP. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci USA 2009;106:15837-15842;
  • 40. Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M, Portugal S, Soares MP, Mota MM. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 2007;13:703-710;
  • 41. Arai Y, Kubo T, Kobayashi K, et al. Adenovirus vector mediated gene transduction to chondrocytes: in vitro evaluation of therapeutic efficacy of transforming growth factor beta 1 and heat shock protein 70 gene transduction. J Rheumatol 1997;24:1787–1795;
  • 42. Lechner M., Lirk P., Rieder J.: Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 2005;15:277–289;
  • 43. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;
  • 44. Potter CF, Kuo NT, Farver CF, McMahon JT, Chang CH, Agani FH, Haxhiu MA, Martin RJ. Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatr Res. 1999;45(1):8-13;
  • 45. Hoehn T, Felderhoff-Mueser U, Maschewski K, Stadelmann C, Sifringer M, Bittigau P, Koehne P, Hoppenz M, Obladen M, Bührer C. Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain. Pediatr Res. 2003;54(2):179-84;
  • 46. Moncada S., Higgs A.E. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993;329:2002–2012;
  • 47. Sokołowska M, Włodek L. Dobre i złe strony tlenku azotu. Folia Cardiol 2001;8(5):467-477;
  • 48. Xu F, Tai Fai F, Yung E, Yang M, A YIN J. Endothelial and inducible nitric oxide synthase gene and protein expression in hyperoxia-induced lung injury in premature rat. Acta Pharmacol Sin 2002;(23 Suppl):52-58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40e37f97-203b-4b04-bb36-3894b7eab8a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.