PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A k-Nearest Neighbors Method for Classifying User Sessions in E-Commerce Scenario

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the problem of classification of user sessions in an online store into two classes: buying sessions (during which a purchase confirmation occurs) and browsing sessions. As interactions connected with a purchase confirmation are typically completed at the end of user sessions, some information describing active sessions may be observed and used to assess the probability of making a purchase. The authors formulate the problem of predicting buying sessions in a Web store as a supervised classification problem where there are two target classes, connected with the fact of finalizing a purchase transaction in session or not, and a feature vector containing some variables describing user sessions. The presented approach uses the k-Nearest Neighbors (k-NN) classification. Based on historical data obtained from online bookstore log files a k-NN classifier was built and its efficiency was verified for different neighborhood sizes. A 11-NN classifier was the most effective both in terms of buying session predictions and overall predictions, achieving sensitivity of 87.5% and accuracy of 99.85%.
Rocznik
Tom
Strony
64--69
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Institute of Mathematics and Informatics, Opole University, Opole, Poland
  • Institute of Mathematics and Informatics, Opole University, Opole, Poland
autor
  • GEA Technika Cieplna Sp. z o.o., Opole, Poland
Bibliografia
  • [1] Q. Duan, J. Li, and Y. Wang, “The application of fuzzy association rule mining in e-commerce information system mining”, Adv. Engin. Forum, vol. 6–7, pp. 631–635, 2012.
  • [2] G. Kuang and Y. Li, “Using fuzzy association rules to design e-commerce personalized recommendation system”, TELKOMNIKA Indonesian J. Elec. Engin., vol. 12, no. 2, pp. 1519–1527, 2014.
  • [3] Y.-S. Lee and S.-J. Yen, “Mining web transaction patterns in an electronic commerce environment”, in Advances in Web and Network Technologies, and Information Management – Proc. APWeb/WAIM’07 International Workshops, Huang Shan, China, 2007, LNCS, vol. 4537, pp. 74–85. Springer, 2007.
  • [4] N. D. Thuan, N. G. Toan, and N. L. V. Tuan, “An approach mining cyclic association rules in e-commerce”, in Proc. 15th Int. Conf. Network-Based Inform. Syst. NBiS 2012, Melbourne, Australia, 2012, pp. 408–411.
  • [5] W. Hop, “Web-shop order prediction using machine learning”, Masters Thesis, Erasmus University Rotterdam, 2013.
  • [6] M. Mohammadnezhad and M. Mahdavi, “Providing a model for predicting tour sale in mobile e-tourism recommender systems”, IJITCS, vol. 2, no. 1, pp. 1–8, 2012.
  • [7] N. Poggi et al., “Web customer modeling for automated session prioritization on high traffic sites”, in Proc. User Modeling’07, Corfu, Greece, 2007, LNCS, vol. 4511, pp. 450–454. Springer, 2007.
  • [8] G. Suchacka and G. Chodak, “Practical aspects of log file analysis for e-commerce”, in Proc. Computer Networks’13, Lwowek Śląski- Brunow, Poland, 2013, CCIS, vol. 370, pp. 562–572. Springer, 2013.
  • [9] G. Suchacka, M. Skolimowska-Kulig, and A. Potempa, “Classification of e-customer sessions based on Support Vector Machine”, in Proc. 29th Eur. Conf. Model. Simul. ECMS’15, Albena, Bulgaria, 2015, pp. 594–600.
  • [10] D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, 2005.
  • [11] D. Shen, J.-D. Ruvini, and B. Sarwar, “Large-scale item categorization for e-commerce”, in Proc. 21st ACM Int. Conf. Inform. Knowl. Manag. CIKM’12, Maui, HI, USA, 2012, pp. 595–604.
  • [12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley, 2000.
  • [13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Series in Statistics, 2009.
  • [14] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions”, IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, 2005.
  • [15] J. Cho, K. Kwon, and Y. Park, “Collaborative filtering using dual information sources”, IEEE Intel. Syst., vol. 22, no. 3, pp. 30–38, 2007.
  • [16] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques”, Adv. Artif. Intel., vol. 2009, Article no. 4, 2009.
  • [17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommendation algorithms for e-commerce”, in Proc. 2nd ACM Conf. Elec. Commerce EC’00, Minneapolis, MN, USA, 2000, pp. 158–167.
  • [18] Y. H. Cho and J. K. Kim, “Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce”, Expert Syst. Appl., vol. 26, no. 2, pp. 233–246, 2004.
  • [19] X.-M. Jiang, W.-G. Song, and W.-G. Feng, “Optimizing collaborative filtering by interpolating the individual and group behaviors”, in Proc. 8th Asia-Pacific Web Conf. Frontiers of WWW Res. Develop. APWeb’06, Harbin, China, 2006, LNCS, vol. 3841, pp. 568–578. Springer, 2006.
  • [20] B. Soiraya, A. Mingkhwan, and C. Haruechaiyasak, “E-commerce web site trust assessment based on text analysis”, Int. J. Business Inform., vol. 3, no. 1, pp. 86–114, 2008.
  • [21] M. Adnan, M. Nagi, K. Kianmehr, R. Tahboub, M. Ridley, and J. Rokne, “Promoting where, when and what? An analysis of Web logs by integrating data mining and social network techniques to guide ecommerce business promotions”, Soc. Netw. Anal. Min., vol. 1, no. 3, pp. 173–185, 2011.
  • [22] L. D. Catledge and J. E. Pitkow, “Characterizing browsing strategies in the World-Wide Web”, in Proc. 3rd Int. World-Wide Web Conf. Technol., Tools Appl., 1995, pp. 1065–1073.
  • [23] Z. Chen, A. W.-C. Fu, and F. C.-H. Tong, “Optimal algorithms for finding user access sessions from very large Web logs”, World Wide Web, vol. 6, no. 3, pp. 259–279, 2004.
  • [24] D. Stevanovic, N. Vlajic, and A. An, “Unsupervised clustering of Web sessions to detect malicious and non-malicious website users”, Procedia Comput. Sci., vol. 5, pp. 123–131, 2011.
  • [25] The R project for statistical computing [Online]. Available: http://www.r-project.org
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40e29335-8f5f-4d8c-aa93-8c13a90d1b2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.