PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of effective properties and fracture of metal-ceramic interpenetrating phase composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie właściwości efektywnych i pękania w kompozytach o wzajemnie przenikających się fazach metalu i ceramiki
Języki publikacji
EN
Abstrakty
EN
This dissertation is focused on modelling of the effective elastic and thermal properties, deformation and fracture of metal-ceramic interpenetrating phase composites (IPCs). Compared to typical metal matrix composites (MMC) reinforced with particles or ceramic fibres, the main advantages of IPCs are: improved homogeneity, microstructure stability at elevated temperatures, increased thermal conductivity and, thankful to the interpenetrating microstructure, moderation of cracking with metallic networks. These superior characteristics make the IPCs attractive structural and functional materials for e.g. transport, power and electronic industry sectors. The industry push for new materials and technologies provides a strong motivation for research in the fields of processing, characterisation and modelling of IPCs. Analytical and numerical models are proposed to predict the effective elastic properties of the IPCs. The problems of deformation and fracture of IPCs under quasi-static loading are addressed numerically in a set of models aiming at the determination of the fracture parameters taking into account the crack bridging mechanism. A particular attention is given to creation of numerical models for effective elastic constants and fracture parameters of IPCs based on their real microstructure obtained from computed microtomography (micro-CT) images. Additional information from own experimental research on manufacturing and characterization of IPCs is reported in Appendix as a supporting material used in the modelling. One of the main contributions of this research to the field of IPCs modelling is the proposed methodology of using micro-CT images of real interpenetrating microstructure in the Finite Element Method approach when calculating the effective elastic constants and the J-integral for the interpenetrating phase composites.
PL
Tematem rozprawy doktorskiej jest modelowanie makroskopowych (efektywnych) właściwości sprężystych i termicznych oraz procesów deformacji i pękania kompozytów typu wzajemnie przenikających się faz (Interpenetrating Phase Composites, IPC). W porównaniu z typowymi kompozytami na osnowie metalowej (metal matrix composites, MMC), kompozyty IPC wyróżniają się większą jednorodnością mikrostruktury, stabilnością mikrostruktury w podwyższonych temperaturach, podwyższoną przewodnością cieplną, ponadto dzięki sieciowej mikrostrukturze pękanie w IPC nie zachodzi w sposób gwałtowny. Właściwości te powodują, że kompozyty IPC są atrakcyjnymi materiałami konstrukcyjnymi i funkcjonalnymi dla przemysłu transportowego, energetycznego czy elektronicznego, co stanowi silną motywację dla rozwoju technologii wytwarzania, badania mikrostruktury i właściwości oraz modelowania. W pracy zaproponowano modele analityczne i numeryczne do szacowania efektywnych stałych sprężystości kompozytów IPC. Mechanizmy deformacji i pękania badanych kompozytów pod działaniem obciążeń quasi-statycznych zostały przedstawione w serii modeli numerycznych, z uwzględnieniem rzeczywistej mikrostruktury materiału otrzymanej za pomocą mikrotomografii komputerowej (computed microtomography, micro-CT). W dodatku do rozprawy zamieszczono wyniki własnych badań doświadczalnych związanych z wytwarzaniem i charakteryzacją materiałów IPC, jako informacji pomocniczych przy konstruowaniu modeli IPC. Jednym z głównych osiągnięć pracy jest zaproponowanie metodologii wykorzystania danych mikrostrukturalnych z mikrotomografii komputerowej w problemach wyznaczania stałych efektywnych i parametrów pękania materiałów IPC i jej praktyczna numeryczna implementacja w ramach MES.
Rocznik
Tom
Strony
1--218
Opis fizyczny
Bibliogr. 194 poz., rys., tab.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. Broutman L. J. and Krock R. H. Composite Materials. Vol. 1, Interfaces in Metal Matrix Composites, ed.: A. Metcalfe, Academic Press, New York, London, 1974.
  • 2. Pietrzak K. Formowanie się warstw pośrednich w kompozytach metalowoceramicznych i ich złączach, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1998.
  • 3. Basista M. and Węglewski W. Modelling of damage and fracture in ceramic matrix composites, Journal of Theoretical and Applied Mechanics, 44, 455–484, 2006.
  • 4. Felten F., Schneider G. A., Sadowski T. Estimation of R-curve in WC/Co cermet by CT test, International Journal of Refractory Metals and Hard Materials, 26, 55-60, 2008.
  • 5. Léger A., Calderon N. R., Charvet R., Dufour W., Bacciarini C., Weber L., Mortensen A. Capillarity in pressure infiltration: improvements in characterization for high-temperature systems, Journal of Materials Science, 47 (24), 8419-8430, 2012.
  • 6. Skirl S. Mechanische Eigenschaften und Thermisches Verhalten von Al2O3/Al und Al2O3/Ni3Al Verbundwerkstoffen mit Durchdringungsgefüge, Dr.-Ing. Dissertation, Fachbereich der Materialwissenschaft, Technische Universität Darmstadt, VDI Verlag GmbH, Düsseldorf, 1998.
  • 7. Poniznik Z., Salit V., Basista M. and Gross D. Effective elastic properties of interpenetrating phase composites, Computational Materials Science, 44, 813- 820, 2008.
  • 8. Simpleware ScanIP/FE v.4.3 Simpleware Ltd., Exeter, UK, 2011.
  • 9. Daehn G. S., Starck B., Xu L., Elfishawy K. F., Ringnalda J., Fraser H. L. Elastic and plastic behavior of a co-continuous alumina/aluminum composite, Acta Materialia, 44 (1), 249-261, 1996.
  • 10. Agrawal P., Conlon K., Bowman K. J., Sun C. T., Cichocki F. R. Jr., Trumble K. P. Thermal residual stresses in co-continuous composites, Acta Materialia, 51, 1143–1156, 2003.
  • 11. Park J. S., Sun C. T., Trumble K. P. Effect of contiguity on the mechanical behavior of co-continuous ceramic metal composites, in: Proceedings of the American Society for Composites: Twentieth Technical Conference, eds.: F. K. Ko, G. R. Palmese, Y. Gogotsi, A. S. D. Wang, DEStech Publications, Inc., 2005
  • 12. Del Rio E., Nash J. M., Williams J. C., Breslin M. C., Daehn G. S. Cocontinuous composites for high-temperature applications, Materials Science & Engineering A, Structural Materials: Properties, Microstructure and Processing, 463, 115-121, 2007.
  • 13. Rödel J., Prielipp H., Claussen N., Sternitzke M., Alexander K. B., Becher P. F., Schneibel J. H. Ni3Al/Al2O3 composites with interpenetrating networks, Scripta Metallurgica et Materialia, 33, 843-848, 1995.
  • 14. Prielipp H., Knechtel M., Claussen N., Streiffer S. K., Müllejans H., Rühle M., Rödel J. Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks, Materials Science and Engineering A, 197, 19–30, 1995.
  • 15. Skirl S., Krause R., Wiederhorn S. M., Rödel J. Processing and Mechanical Properties of Al2O3/Ni3Al Composites with Inerpenetrating Network Microstructure, Journal of the American Ceramics Society, 84, 2034– 2040, 2001.
  • 16. Torquato S., Yeong C. L. Y., Rintoul M. D., Milius D. L., Aksay I. A. Elastic properties and structure of interpenetrating boron carbide/aluminum multiphase composites, Journal of the American Ceramics Society, 82, 1263–68, 1999.
  • 17. Feng X., Mai Y. and Qin Q. A micromechanical model for interpenetrating multiphase composites, Computational Materials Science, 28, 486-493, 2003.
  • 18. Feng X., Tian Z., Liu Y. and Yu S. Effective elastic and plastic properties of interpenetrating multiphase composites, Applied Composite Materials, 11, 33-55, 2004.
  • 19. Hoffman M., Skirl S., Pompe W., Rödel J. Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks, Acta Materialia, 47, 565–577, 1999.
  • 20. Raddatz O., Schneider A., Claussen N. Modelling of R-curve behaviour in ceramic/metal composites, Acta Materialia, 46, 18, 6381–6395, 1998.
  • 21. Frey G.S. son. Über die Elektrische Leitfähigkeit Binärer Aggregate, Zeitschrift für Elektrochemie 38, 260–274, 1932.
  • 22. Tuchinskii L. I. Elastic constants of pseudoalloys with a skeletal structure, Powder Metallurgy and Metal Ceramics, 22 (7), 588-595, 1983.
  • 23. Sharma N.K., Pandit S. N., Vaish R. Microstructural modeling of Ni-Al2O3 composites using object-oriented finite-element method, International Scholarly Research Network, ISRN Ceramics, 2012, Article ID 972054, 6 pages, 2012.
  • 24. Agarwal A., Singh I. V., Mishra B.K. Evaluation of elastic properties of interpenetrating phase composites by mesh-free method, Journal of Composite Materials, 47, 1407-1423, 2013a.
  • 25. Agarwal A., Singh I. V., Mishra B.K. Numerical prediction of elasto-plastic behaviour of interpenetrating phase composites by EFGM, Composites,51, 327-336, 2013b.
  • 26. Gao J., Rayes N. Modeling of the Mechanical Properties of a Polymer-Metal Foam Interpenetrating Phase Composite, Mechanics of Solids, Structures and Fluids, ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada, 9, IMECE2014-37608, V009T12A048; 6 pages, doi: 10.1115/IMECE2014-37608, 2014.
  • 27. Xie F., Lu Z., Yuan Z. Numerical analysis of elastic and elastoplastic behavior of interpenetrating phase composites, Computational Materials Science, 97, 94– 101, 2015.
  • 28. Ai L., Gao X.-L. Evaluation of effective elastic properties of 3-D printable interpenetrating phase composites using the meshfree radial point interpolation method, Mechanics of Advanced Materials and Structures, published online: 25 Jan 2016, 11 pages, DOI:10.1080/15376494.2016.1143990, 2016.
  • 29. Nemat-Nasser S. and Hori M. Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, 1999.
  • 30. Aboudi J. Mechanics of Composite Materials, Elsevier, 1991.
  • 31. Mura T. Micromechanics of Defects in Solids, Martinus Nijhoff Publication, The Hague, 1987.
  • 32. Janus-Michalska M. and Pęcherski R. B. Macroscopic properties of open-cell foams based on micromechanical modelling, Technische Mechanik, 23, 234‒244, 2003.
  • 33. Moon R., Tilbrook M., Hoffman M. and Neubrand A. Al–Al2O3 composites with interpenetrating network structures: composite modulus estimation, Journal of the American Ceramics Society, 88, 3, 666-74, 2005.
  • 34. Jhaver R. Compression response and modeling of interpenetrating phase composites and foam-filled honeycombs, M. Sc. Thesis, Auburn University, Auburn, Alabama, 2009a
  • 35. He Y. Computational modeling of interpenetrating phase composites, M. Sc. Thesis, The University of Texas at Dallas, Dallas, 2013.
  • 36. Cheng F., Kim S. M., Reddy J. N., Abu-Al-Rub R. K. Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution, International Journal of Plasticity, 61, 94–111, 2014.
  • 37. Tippur H. Processing, Failure Characterization and Modeling of Lightweight Interpenetrating Network Composites, Final Report, Auburn University, AL, 2012.
  • 38. Rosen B. W., Hashin Z. Effective thermal expansion coefficients and specific heats of composite materials, International Journal of Engineering Science, 8, 157-173, 1970.
  • 39. Levin V. M. On the coefficients of thermal expansion of heterogeneous materials, English translation: Mechanics of Solids, 2 (1), 58-61, 1967.
  • 40. Hashin Z. and Shtrikman S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, Journal of the Mechanics and Physics of Solids, 11, 127-140, 1963.
  • 41. Mishnaevsky L. Jr Automatic voxel-based generation of 3D microstructural FE models and its application to the damage analysis of composites, Materials Science and Engineering A, 407, 11-23, 2005.
  • 42. Mishnaevsky L. Jr A simple method and program for the analysis of the microstructure-stiffness interrelations of composite materials, Journal of Composite Materials, 41 (1), 73-87, 2007a.
  • 43. Milton G. The Theory of Composites, Cambridge University Press, 2002.
  • 44. Gross D. and Seelig T. Fracture Mechanics with an Introduction to Micromechanics, Springer, Berlin, Heidelberg, New York, 2006.
  • 45. Leßle P., Dong M., Schmauder S. Self-consistent matricity model to simulate the mechanical behaviour of interpenetrating microstructures, Computational Materials Science, 15, 455‒465, 1999.
  • 46. Jhaver R. and Tippur H. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC), Materials Science and Engineering A, 499, 507–517, 2009b.
  • 47. Wejrzanowski T. Spychalski W., Różniatowski K., Kurzydlowski K. J. Image based analysis of complex microstructures of engineering materials, International Journal of Applied Mathematics and Computer Science, 18 (1), 33–39, 2008.
  • 48. Nowak M., Nowak Z., Pęcherski R. B., Potoczek M., Śliwa R. E. On the reconstruction method of ceramic foam structures and the methodology of Young modulus determination, Archives of Metallurgy and Materials, 58 (4), 1219–1222, 2013.
  • 49. Nowak Z., Nowak M., Pęcherski R. B., Potoczek M., Śliwa R. E. Mechanical properties of the ceramic open-cell foams of variable cell sizes, Archives of Metallurgy and Materials, 60 (3), 1957–1963, 2015.
  • 50. Wejrzanowski T., Skibinski J., Madej L., Kurzydlowski K. J. Modeling structures of cellular materials for application at various length – scales, Computer Methods in Materials Science, 13 (4), 493–500, 2013a.
  • 51. Wejrzanowski T., Skibinski J., Szumbarski J., Kurzydlowski K. J. Structure of foams modeled by Laguerre–Voronoi tessellations, Computational Materials Science, 67, 216–221, 2013b.
  • 52. Michailidis N., Stergioudi F., Omar H., Tsipas D. N. An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response, Mechanics of Materials, 42, 142–147, 2010.
  • 53. Jaganathan S., Tafreshi H. V., Pourdeyhimi B. A realistic approach for modeling permeability of fibruous media: 3-D imaging coupled with CFD simulation, Chemical Engineering Science, 63, 244-252, 2008a.
  • 54. Jaganathan S., Tafreshi H. V., Pourdeyhimi B. Two-Scale Modeling Approach to Predict Permeability of Fibrous Media, Journal of Engineered Fibers and Fabrics, SPECIAL ISSUE 2008 – FILTRATION, 13-18, 2008b.
  • 55. Kenesei P., Biermann H. and Borbély A. Estimation of Elastic Properties of Particle Reinforced Metal-Matrix Composites Based on Tomographic Images, Advanced Engineering Materials, 8 (6), 500-506, 2006a.
  • 56. Kenesei P., Klohn A., Biermann H. and Borbély A. Mean Field and Multiscale Modeling of a Particle Reinforced Metal-Matrix Composite Based on Microtomographic Investigations, Advanced Engineering Materials, 8 (6), 506-510, 2006b.
  • 57. Doroszko M. and Seweryn A. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography, Materials Science & Engineering A, 689, 142-156, 2017.
  • 58. Roux S., Hild F., Viot P., Bernard D. Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites Part A, 39, 1253‒1265, 2008.
  • 59. Li G., Zhang X., Fan Q., Wang L., Zhang H., Wang F., Wang Y. Simulation of damage and failure processes of interpenetrating SiC/Al composites subjected to dynamic compressive loading, Acta Materialia, 78, 190–202, 2014.
  • 60. Heggli M., Etter T., Wyss P., Uggowitzer P. J. and Gusev A. Approaching representative volume element size in interpenetrating phase composites, Advanced Engineering Materials, 7 (4), 225‒229, 2005.
  • 61. Seweryn A. Metody numeryczne w mechanice pękania, in: Biblioteka Mechaniki Stosowanej, Seria A. Monografie, eds.: Z. Mróz, M. Kleiber, H. Petryk, K. Sobczyk, Instytut Podstawowych Problemów Techniki PAN, Warszawa, 2003.
  • 62. de Borst R., Pamin J., Schellekens J. C. J. and Sluys L. J. Continuum Methods for Localized Failure, in: Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics, eds.: G. Baker and B. L. Karihaloo, CRC Press, Taylor & Francis, 2004.
  • 63. de Borst R. and Pamin J. Gradient plasticity in numerical simulation of concrete cracking, European Journal of Mechanics - A/Solids, 15 (2), 295-320, 1996.
  • 64. Emmel T. Untersuchung des Bruchverhaltens von Metall-KeramikVerbundverkstoffen, MSc Thesis, Technische Hochschule Darmstadt, Darmstadt, 1995.
  • 65. Rödel J. Mechanics of bulk ceramics, in: Mechanics of Advanced Materials, AMAS Course ‒ MAM’2001, ed.: Z. Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, October 8-12, 369-445, 2001.
  • 66. Grassi M., Zhang X. Finite element analyses of mode I interlaminar delamination in z-fibre reinforced composite laminates, Composites Science & Technology, 63, 1815-1832, 2003.
  • 67. Kruzic J. J., Nalla R. K., Kinney J. H., Ritchie R. O. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration, Biomaterials, 24 (28), 5209–5221, 2003.
  • 68. Cartie D. D. R., Cox B. N., Fleck N. A. Mechanisms of crack bridging by composite and metallic rods, Composites Part A, 35, 1325–1336, 2004.
  • 69. Fünfschilling S., Fett T., Hoffmann M. J., Oberacker R., Schwind T., Wippler J., Bӧhlke T., Ӧzcoban H., Schneider G. A., Becher P. F., Kruzic J. J. Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure. Acta Materialia, 59, 3978-3989, 2011.
  • 70. Shao Y., Zhao H.-P., Feng X.-Q., Gao H. Discontinuous crack-bridging model for fracture toughness analysis of nacre, Journal of Mechanics and Physics of Solids, 60 (8), 1400–1419, 2012.
  • 71. Cotterell B., Rice J. R. Slightly curved or kinked cracks, International Journal of Fracture, 16 (2), 155-169, 1980.
  • 72. Gilbert R. I. Shrinkage, cracking and deflection - the serviceability of concrete structures, Electronic Journal of Structural Engineering 1 (1), 2-14, 2001.
  • 73. Evans A. G., Dagleish B. J., He M. and Hutchinson J. W. On crack path selection and the interface fracture energy in bimaterial systems, Acta Metallurgica, 37 (12), 3249–3254, 1989.
  • 74. Shum D. K. M. and Hutchinson J. W. On toughening by microcracks, Mechanics of Materials, 9, 83-91, 1990.
  • 75. Kobayashi A., Ramulu M. A dynamic fracture analysis of crack curving and branching, Journal de Physique Colloques, 46 (C5), C5-197-C5-206, 1985.
  • 76. Ha Y. D. H., Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162, 229–244, 2010.
  • 77. Hutchinson J. W., Jensen H. M. Models of fiber debonding and pullout in brittle composites with friction, Mechanics of Materials, 9 (2), 139–163, 1990.
  • 78. Stang H., Li Z., Shah S. P. Pullout problem: stress versus fracture mechanical approach, Journal of Engineering Mechanics, 116, 2136-2150, 1990.
  • 79. Nairn J. A., Liu C.-H., Mendels D.-A., Zhandarov S. Fracture Mechanics Analysis of the Single-Fiber Pull-Out Test and the Microbond Test Including The Effects of Friction and Thermal Stresses, in: Proceedings of the 16th Ann. Technical Conference of the American Society of Composites, American Society for Composites, VPI, Blacksburg VA, September 9-12, 2001.
  • 80. Jia Y. Y., Yan W., Liu H.-Y. Numerical study on carbon fiber pullout using a cohesive zone model, in: Proceeding of 18th International Conference on Composite Materials, International Committee on Composite Materials (ICCM), Jeju Island, South Korea, August 21-26, 2011.
  • 81. Jia Y. Y., Yan W., Liu H.-Y. Numerical study on residual thermal stresses in carbon fiber pullout, in: Proceeding of 28th International Congress of the Aeronautical Sciences, International Council on The Aeronautical Sciences (ICAS), Brisbane, Australia, September 23-28, 1855-1860, 2012.
  • 82. Bheemreddy V., Chandrashekhara K., Dharani L. R., Hilmas G. E. Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks, Computational Materials Science, 79, 663–673, 2013.
  • 83. Bansal N. P. Handbook of Ceramic Composites, Springer Science & Business Media, 2006.
  • 84. Sun Y., Zhang H. F., Wang A. M., Fu H. M., Hu Z. Q., Wen C. E., and Hodgson P. D. Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance, Applied Physics Letters, 95, 171910, 2009.
  • 85. Chang H., Binner J. and Higginson R. Ballistic evaluation and damage characterization of metal-ceramic interpenetrating composites for light armor applications, in: Advances in Ceramic Armor VI: Ceramic Engineering and Science Proceedings, ed.: J. J. Swab, John Wiley & Sons, 97- 104, 2010.
  • 86. Scherm F., Völkl R., Neubrand A., Bosbach F., Glatzel U. Mechanical characterisation of interpenetrating network metal–ceramic composites, Materials Science and Engineering A, 527, 1260–1265, 2010.
  • 87. Roy S., Gibmeier J., Kostov V., Weidenmann K. A., Nagel A., Wanner A. Internal load transfer and damage evolution in a 3D interpenetrating metal/ceramic composite, Materials Science and Engineering A, 551, 272–279, 2012.
  • 88. Wang L., Fan Q., Li G., Zhang H., Wang F. Experimental observation and numerical simulation of SiC3D/Al interpenetrating phase composite material subjected to a three-point bending load, Computational Materials Science, 95, 408–413, 2014.
  • 89. Poniżnik Z., Nowak Z. and Basista M. Numerical modeling of deformation and fracture of reinforcing fibers in ceramic-metal composites, International Journal of Damage Mechanics, ISSN: 1056-7895, DOI: 10.1177/1056789515611945, 26 (5), 711-734, 2017.
  • 90. Budiansky B., Amazigo J. C., Evans A. G. Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, Journal of the Mechanics and Physics of Solids, 36 (2), 167-187, 1988.
  • 91. Sigl L. S., Mataga P. A., Dagleish B. J., McMeeking R. M. and Evans A. G. On the toughness of brittle materials reinforced with a ductile phase, Acta Metallurgica, 36 (4), 945-953, 1988.
  • 92. Beldica C. and Botsis J. Experimental and numerical studies in model composites Part II: Numerical results, International Journal of Fracture, 82 (2), 175–192, 1996.
  • 93. Mataga P. A. Deformation of crack bridging ductile reinforcements in toughened brittle materials, Acta Metallurgica, 37, 3349-3359, 1989.
  • 94. Hoffman M., Fiedler B., Emmel T., Prielipp H., Claussen N., Gross D., Rödel J. Fracture behaviour in metal fibre reinforced ceramics, Acta Materialia, 45 (9), 3609–3623, 1997.
  • 95. Lapczyk I., Hurtado J. A. Progressive damage modeling in fiber-reinforced materials, Composites Part A, 38, 2333–2341, 2007.
  • 96. Bobiński J. and Tejchman J. Simulations of fracture in concrete elements using continuous and discontinuous models, Mechanics and Control, 30 (4), 183‒193, 2011.
  • 97. Winzer J. S. Production and Characterisation of Alumina-Copper Interpenetrating Composites, Ph. D. thesis, Material- und Geowissenschaften, Nichtmetallisch-Anorganische Werkstoffe, Technische Universität Darmstadt, Darmstadt, 2011.
  • 98. Ju J. W. and Ko Y. F. Micromechanical elastoplastic damage modeling of progressive interfacial arc debonding for fiber reinforced composites, International Journal of Damage Mechanics, 17 (4), 307-356, 2008.
  • 99. Sadowski T., Balawender T., Śliwa R., Golewski P., Kneć M. Modern hybrid joints in aerospace: modelling and testing, Archives of Metallurgy and Materials, 58 (1), 163‒169, 2013a.
  • 100. Sadowski T., Golewski P. Numerical study of the prestressed connectors and their distribution on the strength of a single lap, a double lap and hybrid joints subjected to uniaxial tensile test, Archives of Metallurgy and Materials, 58 (2), 579‒585, 2013b.
  • 101. Postek E. and Sadowski T. Cracks in interfaces and around their junctions in WC/Co composite, Engineering Transactions, 64 (4), 589–596, 2016.
  • 102. Węglewski W., Bochenek K., Basista M., Schubert Th., Jehring U., Litniewski J., Mackiewicz S. Comparative assessment of Young’s modulus measurements of metal–ceramic composites using mechanical and nondestructive tests and micro-CT based computational modeling, Computational Materials Science, 77, 19–30, 2013.
  • 103. Węglewski W., Basista M., Manescu A., Chmielewski M., Pietrzak K., Schubert Th. Effect of grain size on thermal residual stresses and damage in sintered chromium–alumina composites: Measurement and modeling, Composites Part B, 67, 119–124, 2014.
  • 104. Dandekar C. R., Shin Y. C. Effect of porosity on the interface behavior of an Al2O3–aluminum composite: A molecular dynamics study, Composites Science and Technology, 71, 350–356, 2011.
  • 105. Zhong W. and Pan N. A computer simulation of single fiber pull out process in a composite, Journal of Composite Materials, 37, 1951-1969, 2003.
  • 106. Tsai J. H., Patra A. and Wetherhold R. Finite element simulation of shaped ductile fiber pullout using a mixed cohesive zone/friction interface model, Composites Part A, 36, 827-838, 2005.
  • 107. Zhang G. Q., Suwatnodom P. and Ju J. W. Micromechanics of crack bridging stress-displacement and fracture energy in steel hooked-end fiber-reinforced cementitious composites, International Journal of Damage Mechanics, 22, 6, 829-859, 2012.
  • 108. Skarżyński Ł. and Tejchman J. Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography, Strain, 52, 26‒45, 2016.
  • 109. Kozicki J. and Tejchman J. Simulation of fracture process in concrete elements with steel fibres using discrete lattice model, in: Selected Topics of Contemporary Solid Mechanics, eds.: Z. Kotulski, P. Kowalczyk, W. Sosnowski, Proceedings of the 36th Solid Mechanics Conference, Gdańsk, Poland, September 9-12, Prace IPPT-IFTR Reports 2/2008, Instytut Podstawowych Problemów Techniki PAN, Warszawa, 2008.
  • 110. Emmel T. Theoretische und numerische Untersuchung von Versagensmechanismen in Metall-Keramik-Verbundverkstoffen, Dr.-Ing. Dissertation, Institut für Mechanik, Technische Universität Darmstadt, Darmstadt, 2002.
  • 111. Rice J. A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35, 379‒386, 1968.
  • 112. Cherepanov G. P. Crack propagation in continuous media, Journal of Applied Mathematics and Mechanics (Engl. transl. of PMM, 31 (3), 476‒488), 31 (3), 503‒512, 1967.
  • 113. Broek D. Elementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leyden, The Netherlands, 1974.
  • 114. Eshelby J. D. The Force on an Elastic Singularity, Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, https://doi.org/10.1098/rsta.1951.0016, 1951.
  • 115. Maugin G. A. Material Inhomogeneities in Elasticity, Chapman & Hall, London, 1993.
  • 116. Maugin G. A. Configurational Forces, in: UNESCO Encyclopedia of Life Support Systems (EOLSS), Volume: Continuum Mechanics, Article 6.161.18, 40 pages, eds.: J. Merodio and G. Saccomandi, Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France, [http://www.eolss.net], 2009.
  • 117. Miehe C. and Gürses E. A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment, International Journal For Numerical Methods In Engineering, 72, 127‒155, 1999.
  • 118. Müller R., Gross D., Maugin G. A. Use of material forces in adaptive finite element methods, Computational Mechanics, 33, 421‒434, 2004.
  • 119. Gross D., Müller R., Kolling S. Configurational forces ‒ morphology evolution and finite elements, Mechanics Research Communications, 29, 529‒536, 2002.
  • 120. Gross D., Kolling S., Müller R., Schmidt I. Configurational forces and their applications in solid mechanics, European Journal of Mechanics A/Solids, 22, 669‒692, 2003.
  • 121. Plate C. Fracture Mechanical Analysis of Failure Processes in Antarctic Ice Shelves, Ph. D. thesis, Lehrstuhl für Technische Mechanik, Technische Universität Kaiserslautern, Kaiserslautern, 2015.
  • 122. Irwin G. R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, Journal of Applied Mechanics, 24, 361‒364, 1957.
  • 123. Eischen J. W. Fracture of nonhomogeneous materials, International Journal of Fracture, 34, 3-22, 1987.
  • 124. Honein T. and Herrmann G. Conservation laws in nonhomogeneous plane elastostatics, Journal of Mechanics and Physics of Solids, 45, 789-805, 1997.
  • 125. Anlas G., Santare M. H., Lambros J. Numerical calculation of stress intensity factors in functionally graded materials, International Journal of Fracture, 104, 131-143, 2000.
  • 126. Kim J. H. and Paulino G. H. Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials, Mechanics of Materials, 35, 107–128, 2003.
  • 127. Simha M. K., Fisher F. D., Kolednik O. and Chen C. R. Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materials, Journal of Mechanics and Physics of Solids, 51, 209-240, 2003.
  • 128. Marshall D. B and Cox B. N. A J-integral method foor calculating steadystate matrix cracking stresses in composites, Mechanics of Materials, 7 (2), 127-133, 1988.
  • 129. Wang P. C. and Yang J. M. Simulation of fatigue cracking and life distribution of SCS-6 fiber-reinforced orthorombic titanium aluminide composites, Materials Science and Engineering, A222, 101-108, 1997.
  • 130. Yang E. and Li V. C. Numerical study on steady-state cracking of composites, Composites Science and Technology, 67, 151-156, 2007.
  • 131. Gross D. and Seelig T. Fracture Mechanics with an Introduction to Micromechanics, Second Edition, Springer, Berlin, Heidelberg, Dordrecht, London, New York, 2011.
  • 132. Bridgman P. W. Studies of Large Plastic Flow and Fracture, Harvard University Press, Cambridge, 1964.
  • 133. Ashby M. F., Blunt F. J. and Bannister M. Flow characteristics of highly constrained metal wires, Acta Metallurgica, 37 (7), 1847-1857, 1989.
  • 134. Gurson A. L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, The American Society of Mechanical Engineers ASME, 99 (1), 2-15, 1977.
  • 135. Launey M. E. and Ritchie R. O. On the Fracture Toughness of Advanced Materials, Advanced Materials, 21, 2103–2110, 2009.
  • 136. Argon A. S. Fracture of Composites, in: Treatise on Materials Science and Technology: Materials Science Series, ed.: H. Herman, Elsevier, 1, 2013.
  • 137. Schmauder S. and Mishnaevsky L. Jr Micromechanics and Nanosimulation of Metals and Composites. Advanced Methods and Theoretical Concepts, Springer, Berlin, Heidelberg, 2009.
  • 138. Węglewski W., Basista M. Modelling of thermal stresses and damage in Cu/Al2O3 interpenetrating phase composites, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), eds.: J. Eberhardsteiner et.al., Vienna, Austria, 2012.
  • 139. Basista M., Węglewski W., Bochenek K., Poniżnik Z. and Nowak Z. MicroCT finite element analysis of thermal residual stresses and fracture in metalceramic composites, Advanced Engineering Materials, ISSN: 1438-1656, DOI: 10.1002/adem.201600725, 19 (8), 1600725-1-9, 2017.
  • 140. Mishnaevsky L. Jr Computational Mesomechanics of Composites, WileyInterscience, 2007b.
  • 141. Belytschko T. and Black T. Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45, 601-620, 1999.
  • 142. Dumstorff P. and Meschke G. Crack propagation criteria in the framework of X-FEM-based structural analyses, International Journal for Numerical and Analytical Methods in Geomechanics, 31, 239-259, 2007.
  • 143. Zangmeister T. On the XFEM for the Elasto-Plastic Deformation of Heterogeneous Materials, Ph. D. thesis, Lehrstuhl für Technische Mechanik, Technische Universität Kaiserslautern, Kaiserslautern, 2015.
  • 144. ABAQUS. SIMULIA ABAQUS 6.10 Documentation, Dassault Systems, Simulia Corp., Providence, RI, USA, 2010.
  • 145. Dobrzański L. A. Podstawy nauki o materiałach i metaloznawstwo. Materiały inżynierskie z podstawami projektowania materiałowego, Wydawnictwa Naukowo-Techniczne, Gliwice – Warszawa, 2002.
  • 146. Ostrowska-Maciejewska J. and Kowalczyk-Gajewska K. Rachunek tensorowy w mechanice ośrodków ciągłych, Wydawnictwo Instytutu Podstawowych Problemów Techniki PAN, Warszawa, 2013.
  • 147. Basista M. and Poniżnik Z. Modelling of effective elastic properties and crack bridging in metal-ceramic interpenetrating phase composites, World Journal of Engineering, 7 (3), 95-96, 2010.
  • 148. Ostrowska-Maciejewska J. Mechanika Ciał Odkształcalnych, Wydawnictwo Naukowe PWN, Warszawa, 1994.
  • 149. Werkstoffdatenblatt des Deutsches Kupferinstitut Cu-ETP, www.kupferinstitut.de, 2005.
  • 150. Lipka J. Wytrzymałość materiałów, Wydawnictwa Politechniki Warszawskiej, Warszawa, 1990.
  • 151. Zimmermann A., Hoffmann M., Emmel T., Gross D., Rödel J. Failure of metal-ceramic composites with spherical inclusions, Acta Materialia, 49, 3177-87, 2001.
  • 152. Christensen R. M. Mechanics of Composite Materials, John Wiley & Sons, New York, 1979.
  • 153. Mishnaevsky L. Jr Private communication, 2006.
  • 154. Schmauder S., Weber U., Hofinger I. and Neubrand A. Modelling the deformation behaviour of W/Cu composites by a self-consistent matricity model, Technische Mechanik, 19 (4), 313–320, 1999.
  • 155. Torquato S. Modeling of physical properties of composite materials, International Journal of Solids and Structures, 37, 411-422, 2000.
  • 156. Taylor R. L. FEAP - A Finite Element Analysis Program, Version 7.5 User/Theory Manual, Department of Civil and Environmental Engineering, University of California, Berkeley, 2005.
  • 157. Huet Ch. Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies, Mechanics of Materials, 31, 787–829, 1999.
  • 158. ASTM E111-97. Standard test method for Young’s modulus, Tangent modulus, and Chord modulus, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 03.01, 230-236, 1999.
  • 159. ASTM E132-97. Standard test method for Poisson’ ratio at Room Tempeature, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 03.01, 260-262, 1999.
  • 160. Ruud J. A., Josell D., Spaepen F. and Greer A. L. A new method for tensile testing of thin films, Journal of Materials Research, 8 (1), 112-117, 1993.
  • 161. Benito, J.A., Manero, J.M., Jorba, J., Roca A. Change of Young’s modulus of cold-deformed pure iron in a tensile test, Metallurgical and Materials Transactions A, 36A, 3317-3324, 2005.
  • 162. Ogden R. W. Non-Linear Elastic Deformations, Dover Publications, Inc., Mineola, New York, 1997.
  • 163. Petryk H. Podstawy Mechaniki Materiałów, lecture notes, Instytut Podstawowych Problemów Techniki PAN, Warszawa, 2006.
  • 164. Naruse K. Estimation of shear moduli of wood by quasi-simple shear tests, Journal of Wood Science, 49, 479–484, 2003.
  • 165. Hußnätter W. and Merklein M. Characterization of material behavior under pure shear condition, International Journal of Material Forming, 1, Suppl. 1, 233, 2008.
  • 166. Nunes L. C. S. Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Materials Science and Engineering A, 528, 1799–1804, 2011.
  • 167. Nunes L. C. S. and Moreira D. C. Simple shear under large deformation: Experimental and theoretical analyses, European Journal of Mechanics A/Solids, 42, 315-322, 2013.
  • 168. Timoshenko S. Strength of Materials, Part 1: Elementary Theory and Problems, D. Van Nostrand Company, Inc., Toronto, New York, London, 1953.
  • 169. Destrade M., Murphy J. G., Saccomandi G. Simple shear is not so simple, International Journal of Non-Linear Mechanics, 47, 210–214, 2012.
  • 170. Moreira D. C. and Nunes L. C. S. Test method: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation, Polymer Testing, 32, 240-248, 2013.
  • 171. Gitman I. M., Askes H. and Sluys L. J. Representative volume: Existence and size determination, Engineering Fracture Mechanics, 74, 2518-2534, 2007.
  • 172. ISO 23146. First edition 2008-06-01 Fine ceramics (advanced ceramics, advanced technical ceramics) — Test methods for fracture toughness of monolithic ceramics — Single-edge V-notch beam (SEVNB) method, 2008.
  • 173. Ashby M. F. GRANTA – The CES 2009 EduPack Resource Booklet, Part 2: Material and Process Selection Charts, downloaded from: www.grantadesign.com/education/, 2009.
  • 174. Marciniak Z., Mróz Z., Olszak W., Perzyna P., Rychlewski J., Sawczuk A., Szczepiński W., Urbanowski W. and Życzkowski M. Teoria Plastyczności, eds.: Olszak W., Perzyna P. and Sawczuk A., Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Państwowe Wydawnictwo Naukowe, Warszawa, 1965.
  • 175. Życzkowski M. Combined Loadings in the Theory of Plasticity, PWN – Polish Scientific Publishers, Warsaw, 1981.
  • 176. Lubliner J. Plasticity Theory, Macmillan Publishing Company, New York, 1990.
  • 177. Jarząbek D. M., Chmielewski M., Dulnik J. and Strojny-Nędza A. The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites, Journal of Materials Engineering and Performance, doi: 10.1007/s11665-016-2107-3, 2016.
  • 178. Juvé D., Courbière M. and Tréheux D. Bonding of the Cu-Al2O3 interfaces. Mechanisms, structure and mechanical properties, in: Metal-Ceramic Interfaces: Proceedings of an International Workshop, Acta-Scripta Metallurgica proceedings series, eds.: M. Rühle, A. G. Evans, J. P. Hirth, M. F. Ashby, Elsevier, 4, 152-158, https://books.google.pl/books?id=AGchBQAAQBAJ, 2013
  • 179. ASTM E399. Standard test method for plane-strain fracture toughness of metallic materials, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 03.01, 422-452, 1999.
  • 180. Munro R. G. Evaluated material properties for a sintered α-alumina, Journal of the American Ceramic Society, NIST Structural Ceramics Database, SRD Database Number 30, 80 (8), 1919–28, 1997.
  • 181. Miserez A., Rossol A. and Mortensen A. Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites, Engineering Fracture Mechanics, 71, 2385-2406, 2004.
  • 182. Winzer J. S., Weiler L., Poniznik Z., Salit V., Gross D., Basista M., Dusza J., Rödel J. Mechanical properties of copper-alumina interpenetrating network composites, 33rd International Conference and Exposition on Advanced Ceramics and Composites, January 18-23, Daytona Beach, Florida, USA, www.ceramics.org/daytona2009, ICACC-S1-050-2009, 2009.
  • 183. Mattern A., Huchler B., Staudenecker D., Oberacker R., Nagel A., Hoffmann M. J. Preparation of interpenetrating ceramic-metal composites, Journal of the European Ceramic Society, 24, 3399-3408, 2004.
  • 184. Clarke D. R. Interpenetrating Phase Composites, Journal of the American Ceramic Society, 75 (4), 739 – 758, 1992.
  • 185. Wang S., Wang L., Li C., Chi Q., Fei Z. The dry sliding wear behavior of interpenetrating titanium trialuminide/aluminium composites, Applied Composite Materials, 14, 129–144, 2007.
  • 186. Hemrick J. G, Hu M. Z., Peters K. M., Hetzel B. Nano-Scale Interpenetrating Phase Composites (IPC’S) for Industrial and Vehicle Applications, Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2010.
  • 187. Hein S. B. Powder injection moulding of metal ceramic interpenetrating phase composites, Powder Metallurgy, DOI: http://dx.doi.org/10.1179/1743290114Y.0000000116, 2014.
  • 188. Kailash C. J. Fracture Behavior of Particulate Polymer Composites (PPCs) and Interpenetrating Polymer Networks (IPNs): Study of Filler Size, Filler Stiffness and Loading Rate Effects, PhD Thesis, Auburn University, Auburn, Alabama, 2013.
  • 189. Moro M. and Solomon V. C. Design and manufacturing of interpenetrating phase composites for vibration damping applications, Proceedings of the 2012 American Society for Engineering Education ASEE North-Central Section Conference, 2012.
  • 190. Mu J., Zhu Z. W., Zhang H. F., Zhang H. W., Fu H. M., Li H., Wang A. M., Hu Z. Q. A Ti/Ti-Based-Metallic-Glass Interpenetrating Phase Composite with Remarkable Mutual Reinforcement Effect, Advances in Materials Science and Engineering, Hindawi Publishing Corporation, Article ID 127172, 6 pages, 2014.
  • 191. Galal-Yousef S. Mikrorissbildung durch anisotrope thermische Ausdehnung: Experiment und numerische Simulation, Dr.-Ing. Dissertation, Fachbereich Material- und Geowissenschaften, Technische Universität Darmstadt, Shaker Verlag, Aachen, 2004.
  • 192. Galal-Yousef S., Rödel J., Fuller Jr. E. R., Zimmermann A. and El-Dasher B. S. Microcrack evolution in alumina ceramics: experiment and simulation, Journal of the American Ceramic Society, 88 (10), 2809-2816, 2005.
  • 193. ASTM E1876-99. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by Impulse Excitation of Vibration, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 03.01, 1046-1054, 1999.
  • 194. Haj Ibrahim S., Neumann M., Klingner F., Schmidt V. and Wejrzanowski T. Analysis of the 3D microstructure of tape-cast open-porous materials via a combination of experiments and modeling, Materials and Design, 133, 216-223, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40de864d-5dfe-45f5-91ca-c30e975f217f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.