Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work the mechanical characterisation of fused filament fabricated non-reinforced polylactide and polylactide reinforced with short carbon fibre laminate after environmental aging was reported. In the manufacturing process, the symmetric laminate was used to determine the influence of environmental aging of 3D printed parts. The sterilisation agents and buffered saline solution environment were used as aging factors. Also, the fracture surfaces of non-reinforced and reinforced specimens were imaged with scanning electron microscopy. It was found that short carbon fibres in general influence the higher mechanical strength of materials compared to materials without fibres. But at the same time the addition of short carbon fibre influence of significant loos of toughness when aged with sterilisation agents and buffered saline solution environment during one, six or twelve weeks. The results presented in this work are important for several reasons. The study highlights how the addition of short carbon fibres enhances the mechanical properties of polylactide (PLA), which is valuable for applications requiring increased strength and stiffness, while also addressing the impact of environmental aging, particularly in sterilization and buffered saline solution environment.This is crucial in understanding the mechanical behavior of these materials, as many PLA applications (e.g., in medical devices or marine environments) involve exposure to conditions like mentioned above. Understanding how aging affects a material's mechanical properties helps project lifetime and reliability of products.
Wydawca
Rocznik
Tom
Strony
283--298
Opis fizyczny
Bibliogr. 36 poz., fig., tab.
Twórcy
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
- 1. Komorek A., Bakuła M., Bąbel R., Woziński P., Rośkowicz M. The influence of 3D printing direction on the mechanical properties of manufactured elements. *Adv Sci Technol Res J.* 2024, 18, 86–95. [https://doi.org/10.12913/22998624/193528](https://doi.org/10.12913/22998624/193528)
- 2. Hanon M.M., Alshammas Y., Zsidai L. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. *Int. J. Adv. Manuf. Technol.* 2020, 108(1–2), 553–570. [https://doi.org/10.1007/s00170-020-05391-x](https://doi.org/10.1007/s00170-020-05391-x)
- 3. Tao Y., Kong F., Li Z., et al. A review on voids of 3D printed parts by fused filament fabrication. *J. Mater. Res. Technol.* 2021, 15, 4860–4879. [https://doi.org/10.1016/j.jmrt.2021.10.108](https://doi.org/10.1016/j.jmrt.2021.10.108)
- 4. Yao T., Deng Z., Zhang K., Li S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. *Compos. Part B Eng.* 2019, 163, 393–402. [https://doi.org/10.1016/j.compositesb.2019.01.025](https://doi.org/10.1016/j.compositesb.2019.01.025)
- 5. Zhang H., Huang T., Jiang Q., He L., Bismarck A., Hu Q. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. *J. Mater. Sci.* 2021, 23, 12999–13022. [https://doi.org/10.1007/s10853-021-06111-w](https://doi.org/10.1007/s10853-021-06111-w)
- 6. Chen Y., Klingler A., Fu K., Ye L. 3D printing and modelling of continuous carbon fibre reinforced composite grids with enhanced shear modulus. *Eng. Struct.* 2023, 286, 116165. [https://doi.org/10.1016/j.engstruct.2023.116165](https://doi.org/10.1016/j.engstruct.2023.116165)
- 7. Srinivasan Ganesh Iyer S., Keles O. Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. *Compos. Commun.* 2022, 32, 101163. [https://doi.org/10.1016/j.coco.2022.101163](https://doi.org/10.1016/j.coco.2022.101163)
- 8. Liu Z., Lei Q., Xing S. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. *J. Mater. Res. Technol.* 2019, 8(5), 3743–3753. [https://doi.org/10.1016/j.jmrt.2019.06.034](https://doi.org/10.1016/j.jmrt.2019.06.034)
- 9. Goh G.D., Dikshit V., Nagalingam A.P., Goh G.L., Agarwala S., Sing S.L., et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. *Mater. Des.* 2018, 137, 79–89. [https://doi.org/10.1016/j.matdes.2017.10.021](https://doi.org/10.1016/j.matdes.2017.10.021)
- 10. Rossing L., Scharff R.B.N., Chömpff B., Wang C.C.L., Doubrovski E.L. Bonding between silicones and thermoplastics using 3D printed mechanical interlocking. *Mater. Des.* 2020, 186, 108254. [https://doi.org/10.1016/j.matdes.2019.108254](https://doi.org/10.1016/j.matdes.2019.108254)
- 11. Somireddy M., Singh C.V., Czekanski A. Analysis of the material behavior of 3D printed laminates via FFF. *Exp Mech.* 2019, 59, 871–81. [https://doi.org/10.1007/s11340-019-00511-5](https://doi.org/10.1007/s11340-019-00511-5)
- 12. Bragaglia M., Cecchini F., Paleari L., Ferrara M., Rinaldi M., Nanni F. Modeling the fracture behavior of 3D-printed PLA as a laminate composite: Influence of printing parameters on failure and mechanical properties. *Compos. Struct.* 2023, 322, 117379. [https://doi.org/10.1016/j.compstruct.2023.117379](https://doi.org/10.1016/j.compstruct.2023.117379)
- 13. Allen R.J.A., Trask R.S. An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilizing a parallel deposition robot. *Addit. Manuf.* 2015, 8, 78–87. [https://doi.org/10.1016/j.addma.2015.09.001](https://doi.org/10.1016/j.addma.2015.09.001)
- 14. Gao X., Qi S., Kuang X., Su Y., Li J., Wang D. Fused filament fabrication of polymer materials: A review of interlayer bond. *Addit. Manuf.* 2021, 37, 101658. [https://doi.org/10.1016/j.addma.2020.101658](https://doi.org/10.1016/j.addma.2020.101658)
- 15. Moetazedian A., Gleadall A., Han X., Silberschmidt V.V. Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. *J. Mech. Behav. Biomed. Mater.* 2019, 102, 103510. [https://doi.org/10.1016/j.jmbbm.2019.103510](https://doi.org/10.1016/j.jmbbm.2019.103510)
- 16. Hasan M.S., Ivanov T., Vorkapic M., et al. Impact of aging effect and heat treatment on the tensile properties of PLA (poly lactic acid) printed parts. *Mater. Plast.* 2020, 57(3), 147–159. [https://doi.org/10.37358/MP.20.3.5389](https://doi.org/10.37358/MP.20.3.5389)
- 17. Moetazedian A., Gleadall A., Han X., Ekinci A., Mele E., Silberschmidt V.V. Mechanical performance of 3D printed polylactide during degradation. *Addit. Manuf.* 2020, 38, 101764. [https://doi.org/10.1016/j.addma.2020.101764](https://doi.org/10.1016/j.addma.2020.101764)
- 18. Sedlak J., Joska E., Jansky J., et al. Analysis of the mechanical properties of 3D-printed plastic samples subjected to selected degradation effects. *Materials (Basel).* 2023, 16(8). [https://doi.org/10.3390/ma16083268](https://doi.org/10.3390/ma16083268)
- 19. Amza C.G., Zapciu A., Baciu F., Vasile M.I., Popescu D. Aging of 3D printed polymers under sterilizing UV-C radiation. *Polymers (Basel).* 2021, 13(24), 1–16. [https://doi.org/10.3390/polym13244467](https://doi.org/10.3390/polym13244467)
- 20. Andrzejewska A.J. Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens. *Rapid Prototyp. J.* 2022, No. August. [https://doi.org/10.1108/RPJ-05-2021-0115](https://doi.org/10.1108/RPJ-05-2021-0115)
- 21. Pinho A.C., Piedade A.P. Influence of build orientation, geometry and artificial saliva aging on the mechanical properties of 3D printed poly(ε-caprolactone). *Materials (Basel).* 2021, 14(12), [https://doi.org/10.3390/ma14123335](https://doi.org/10.3390/ma14123335)
- 22. Chausse V., Iglesias C., Bou-Petit E., Ginebra M.P., Pegueroles M. Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization. *Polym. Test.* 2023, 117, No. October 2022. [https://doi.org/10.1016/j.polymertesting.2022.107817](https://doi.org/10.1016/j.polymertesting.
- 2022.107817)
- 23. Upadhyay R.K., Mishra A.K., Kumar A. Mechanical degradation of 3D printed PLA in simulated marine environment. *Surfaces and Interfaces,* 2020, 21, 100778. [https://doi.org/10.1016/j.surfin.2020.100778](https://doi.org/10.1016/j.surfin.2020.100778)
- 24. Chaudhary B., Li H., Matos H. Long-term mechanical performance of 3D printed thermoplastics in seawater environments. *Results Mater.* 2023, 17, 100381. [https://doi.org/10.1016/j.rinma.2023.100381](https://doi.org/10.1016/j.rinma.2023.100381)
- 25. Jiang D., Smith D.E. Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. *Addit. Manuf.* 2017, 18, 84–94. [https://doi.org/10.1016/j.addma.2017.08.006](https://doi.org/10.1016/j.addma.2017.08.006)
- 26. Magri A.El, El Mabrouk K., Vaudreuil S., Touhami M.E. Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling. *J. Thermoplast. Compos. Mater.* 2021, 34(5), 581–595. [https://doi.org/10.1177/0892705719847244](https://doi.org/10.1177/0892705719847244)
- 27. Venkatesh R., Jerold John Britto J., Amudhan K., Anbumalar V., Prabhakaran R., Thiyanesh Sakthi R. Experimental investigation of mechanical properties on CF reinforced PLA, ABS and Nylon composite part. *Mater. Today Proc.* 2023, 76, 647–653. [https://doi.org/10.1016/j.matpr.2022.12.091](https://doi.org/10.1016/j.matpr.2022.12.091)
- 28. Tian F., Zhong Z. Modeling of load responses for natural fiber reinforced composites under water absorption. *Compos. Part A Appl Sci Manuf.* 2019, 125, 105564. [https://doi.org/10.1016/j.compositesa.2019.105564](https://doi.org/10.1016/j.compositesa.2019.105564)
- 29. Fang M., et al. Effects of hydrothermal aging of carbon fiber reinforced polycarbonate composites on mechanical performance and sand erosion resistance. *Polymers (Basel).* 2020, 12(11), 1–11. [https://doi.org/10.3390/polym12112453](https://doi.org/10.3390/polym12112453)
- 30. Bachchan A.A., Das P.P., Chaudhary V. Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. *Mater. Today Proc.* 2022, 49, 3403–3408. [https://doi.org/j.matpr.2021.02.812](https://doi.org/j.matpr.2021.02.812)
- 31. Al-Maharma A.Y., Al-Huniti N. Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. *J. Compos. Sci.* 2019, 3(1). [https://doi.org/10.3390/jcs3010027](https://doi.org/10.3390/jcs3010027)
- 32. Dhieb H., Buijnsters J.G., Eddoumy F., Vázquez L., Celis J.P. Surface and sub-surface degradation of unidirectional carbon fiber reinforced epoxy composites under dry and wet reciprocating sliding. *Compos. Part A Appl Sci Manuf.* 2013, 55, 53–62. [https://doi.org/10.1016/j.compositesa.2013.08.006](https://doi.org/10.1016/j.compositesa.2013.08.006)
- 33. Luo J.-J., Daniel I.M. Sublaminate-based lamination theory and symmetry properties of textile composite laminates. *Compos. Part B Eng.* 2004, 35(6), 483–496. [https://doi.org/10.1016/j.compositesb.2003.11.005](https://doi.org/10.1016/j.compositesb.2003.11.005)
- 34. Dano M.L., Hyer M.W. Thermally-induced deformation behavior of unsymmetric laminates. *Int. J. Solids Struct.* 1998, 35(17), 2101–2120. [https://doi.org/10.1016/S0020-7683(97)00167-4](https://doi.org/10.1016/S0020-7683(97)00167-4)
- 35. International Organization For Standardization. ISO 527-1:2012 Plastics – Determination of tensile properties – Part 1: General principles. 2012.
- 36. Ashrafi S.A., Miller P.W., Wandro K.M., Kim D. Characterization and effects of fiber pull-outs in hole quality of carbon fiber reinforced plastics composite. *Materials (Basel).* 2016, 9, 1–12. [https://doi.org/10.3390/ma9100828](https://doi.org/10.3390/ma9100828)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40dd2aa6-d0af-4ebe-bf0a-85683587eb40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.