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HARMONIC IMPACT ON THE SURFACE OF
A HALF-PLANE IN THE FRAMEWORK OF
TIME-FRACTIONAL HEAT CONDUCTION

YURIY POVSTENKO

ABSTRACT

The time-fractional heat conduction equation with the Caputo derivative is considered
in a half-plane. The boundary value of temperature varies harmonically in time. The
integral transform technique is used; the solution is obtained in terms of integral with in-
tegrand being the Mittag-Leffler functions. The particular case of solution corresponding
to the classical heat conduction equation is discussed in details.

1. INTRODUCTION

Fractional calculus (the theory of integrals and derivatives of non-integer
order) still attracts attention of many researchers due to various applica-
tions in physics, chemistry, rheology, engineering, geophysics, geology, bi-
ology, medicine etc. (see [5], [6], [9]-[12], [17]-[19], [21]-[23]| and references
therein).

In the present paper, we consider the time-fractional heat conduction
equation with the Caputo derivative in a half-plane with the boundary
value of temperature being the harmonic function in time. The significant
difference between the standard heat conduction equation and the time-
fractional heat conduction equation with the Caputo derivative of order «
is discussed. The obtained solution develops the results of the previous
study [14], [15]. The interested reader is also referred to the book [13],
which systematically presents solutions to different initial and boundary
value problems for the time-fractional diffusion equation.

2. STATEMENT OF THE PROBLEM
The time-fractional heat conduction equation
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is considered in a half-plane 0 < x < 00, —00 < y < oo. In equation (1),
T denotes temperature, a is the thermal diffusivity coefficient, %(;QT is the
Caputo fractional derivative of order « [2], [4], [10]
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where I'(«) is the gamma function.

As equation (1) is considered in a bounded domain, the corresponding
boundary condition should be imposed. For example, the Dirichlet bound-
ary condition has the following form:

(3) r=0: T=g(y)

The initial conditions read

(4) t=0: T=¢py, 0<a<?2,
oT

(5) t=0: i (r,y), l<a<2

Here g(y,t), p(x,y), and ¥ (x,y) are the given functions.

Before analysis of the initial-boundary-value problem (1), (3)-(5) we will
discuss the significant difference between the time-fractional heat conduc-
tion equation (1) and the standard heat conduction equation corresponding
to the value a = 1:

(©) oT O*T N o°T
— =a | == — ] .
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3. QUASI—STEADY—STATE OSCILLATIONS

In the paper [7] and later on in the book [8], Nowacki considered the
parabolic heat conduction equation in different unbounded domains with
a source term varying harmonically in time. Similarly, we can study Eq. (6)
with the Dirichlet boundary condition

(7) r=0: T =ugd(y)e™",

where §(y) is the Dirac delta function.

According to Nowacki’s approach, we investigate Eq. (6) under boundary
condition (7) without taking the initial conditions into account. Instead,
according to this approach, it is assumed that temperature T'(x, y,t) can be
presented as

(8) T(x,y,t) = Uz, y)e“t.
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For the auxiliary function U(z,y) we obtain

. 0’U  0%U
(9) ZWU_G<81’2+53/2> ,
(10) x=0: U=uod(y).

To solve equation (9) under boundary condition (10) the integral trans-
form technique will be used. Recall that the exponential Fourier transform

[13], [20]

(1) FUw) = fo) = /OO Fly) e dy
is used in the domain —oo < y < 0o and h:: the inverse
(12) F Y}y =fy) = jg /oo Fln) e dn.

The Fourier transform of the second derivative of a function has the follow-
ing form

2 ~
(13) F { dd";gy) } = —1°f(n).

Similarly, for the sin-Fourier transform we have [13], [20]:

(14) F{f(x :/f sin(x§) d

(15) FUF©) = / 7(€)sin(at) d

The sin-Fourier transform is used in the domain 0 < < oo for the Dirichlet
boundary condition with the prescribed boundary value of a function, since
for the second derivative of a function we get

2 -~
(16) AP} = -efo s

=0
Applying to equation (9) with the boundary condition (10) the integral
transforms, we arrive at

(17) (€)=

upa £
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To invert the integral transforms the following integrals [16] will be used:

L 3 _E —bc
(18) /x2+62 sin(br) dz = S e, b>0, Ree>0,
0

_ 21 2 __ P 2 | p2
(19) O/exp< PV X —i—c)cos(bx)dx—\/m[(l (c\/p —i—b),

b>0, Rep>0, Rec>0,

where K(z) is the modified Bessel function.
The solution reads

UYL 1w W
20 U = 7 K 2 2
(20) (2.9) = — 22V 1(\/ —V +y>

and finally

(21) T(:c,y,t):uox\/EKl \/E\/m it
7T\/m a a

4. THE TIME-FRACTIONAL HEAT CONDUCTION EQUATION

It should be emphasized that Nowacki’s approach is based on the well-
known formula for integer order derivatives of exponential function
dreM
den
For Caputo derivative of fractional (non-integer) order of exponential func-
tion we have [14], [15]

(22) =\,

d@e _ e v(n — o, At)
dte F'n—a) ’

where 7(a, z) is the incomplete gamma function [1]

x
v(a,m):/ et dt.
0

Hence, for fractional values of the order of derivative o formula (22) does
not fulfill:

(23) n—1<a<n,

dae)\t
dte

Therefore, assumption (8) cannot be used for the time-fractional heat con-

duction equation and the initial conditions should be taken into account.

(24) £ XM,
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In what follows, Eq. (1) will be considered under the boundary condition
(7) and zero initial conditions

(25) t=0: T=0 0<a<2,
or
26 =0: —=0, 1 <2

To solve this initial-boundary-value problem the integral transforms tech-
nique will be used. Recall that the Caputo fractional derivative for its
Laplace transform rule requires the knowledge of the initial values of the
function and its integer derivatives of order k =1,2,...,n —1 2], [4], [10]:

o n—1
(27) ﬁ{dd‘:it) } =s%f*(s) — Zf(k)((ﬁ)sa*l*k, n—1<a<n,
k=0

where the asterisk denotes the transform, s is the Laplace transform vari-
able.

The sin-Fourier transform with respect to the spatial coordinate z, the
exponential Fourier transform with respect to the spatial coordinate y, and
the Laplace transform with respect to time ¢ give:

:* uoa 5 1
28 T°(&,n,s) = —.
(28) (&m,5) o 9 T a1 ) 5 — i
First of all, we will analyze the classical heat conduction equation (o = 1).
In this case

=5 _ upa £ 1
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(30)

oo o0
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The first term in (30) coincides with the solution (21) and represents the
steady state oscillations, whereas the second term tends to zero for large

values of time and describes the transient process.
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Now we return to solving the time-fractional heat conduction equation.
To invert the Laplace transform in Eq. (28), the following formula (see [2],

3], [4], [10])
L s27F B-1 o
is used. Here E, g(z) is the Mittag-Leffler function in two parameters a
and 3
Sk

(32) Z):kzzorwa

a>0, >0, zeC(C.

Inversion of all the integral transforms with taking the convolution the-
orem into account result in the sought-for solution

_ auo
gy TR0 0/

x e(t=7) cos(yn) sin(z§) EdEdndr.

oo o0
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0

Now we pass to polar coordinates in the (£, n)—plane:
(34) E=pcosh, n=psinb.

In this case equation (33) can be rewritten as

t
2
T,y t) = 220 /
0

o0

/p2 Tozfleiw(th)Eoéva (_ap27_a)
0

2
(35) /2
X /cos(y,osin@) sin(zp cosf) cosfdf dpdr.
0

Substitution of v = sin § with taking into account that [16]

/p2 + q2

where J;(z) is the Bessel function of the first kind, gives

1
/sm 1- xQ) cos (qr) dz = gL Ji <VP2 + QQ) :
0

t

T(xz,y,t) coscp//p Eoa ( apT)

0
x Ji(rp) T et dpdr .

(37)
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The obtained solution can be useful not only in the case of harmonic
surface impact but also for a function g(y,t) periodic in time. Expanding
the boundary function in the Fourier series, the solution can be obtained as
the result of superposition of successive harmonic terms.
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