PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation failure analysis and identification method of zoning type of actual tunnel surrounding rock

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research on deformation zoning mechanism of tunnel surrounding rock is of great significance for ensuring safe production and disaster prevention in coal mines. However, the traditional deformation zoning theory of tunnel surrounding rock uses the ideal strain softening model as the criterion for judging the zoning type of all tunnel surrounding rock, ignoring the difference between the deformation zoning type of a specific actual tunnel and the basic zoning type of surrounding rock. In order to study the method for determining the actual deformation zoning type of tunnel surrounding rock, the formation mechanism of the actual deformation zoning of tunnel surrounding rock has been revealed. Combined with engineering examples, a method for determining the actual deformation zoning type and boundary stress of specific tunnel surrounding rock has been proposed. The results show that the boundary stress and position of the actual deformation zone are determined by the peak strength fitting line, residual strength fitting line, support strength line, and the position of the circumferential and radial stress relationship lines of each deformation zone. The actual boundary stress of each zone of tunnel surrounding rock is ultimately only related to the basic mechanical properties of the tunnel surrounding rock and the in-situ stress field. The research results can provide reference for disaster management of underground engineering, stability evaluation of surrounding rock, and support scheme design.
Rocznik
Strony
549--571
Opis fizyczny
Bibliogr. 42 poz., il., tab.
Twórcy
autor
  • Anhui University of Science and Technology, State key Laboratory of Mining response and disaster Prevention and Control in Deep Coal Mines, Huainan City, China
autor
  • Anhui University of Science and Technology, School of Civil Engineering and Architecture, Huainan City, China
autor
  • China MCC17 Group Co., LTD., Ma’anshan City, China
autor
  • Anhui University of Science and Technology, State key Laboratory of Mining response and disaster Prevention and Control in Deep Coal Mines, Huainan City, China
Bibliografia
  • [1] B. Indraratna and P. K. Kaiser, “Design for grouted rock bolts based on the convergence control method”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 27, no. 4, pp. 269-281, 1990, doi: 10.1016/0148-9062(90)90529-B.
  • [2] C.C. Torres, “Analytical and numerical study of the mechanics of rockbolt reinforcement around tunnels in rock masses”, Rock Mechanics and Rock Engineering, vol. 42, pp. 175-228, 2009, doi: 10.1007/s00603-009-0178-2.
  • [3] J.J. Park, I.S. Cho, I.M. Lee, and S.W. Lee, “Tunnel reinforcement by using pressure-induced inflatable pipes method”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 138, no. 12, pp. 1483-1491, 2012, doi: 10.1061/(ASCE)GT.1943-5606.0000725.
  • [4] H. Kang, Y. Wu, F. Gao, P. Jiang, P. Cheng, X. Meng, and Z. Li, “Mechanical performances and stress states of rock bolts under varying loading conditions”, Tunnelling and Underground Space Technology, vol. 52, pp. 138-146, 2016, doi: 10.1016/j.tust.2015.12.005.
  • [5] J.S. Zhang, Y. Lu, H.L. Zhang, Y.D. Yang, and Y.S. Bu, “Experimental study on fatigue mechanical properties of sandstone after dry and wet cycle”, Archives of Civil Engineering, vol. 68, no. 4, pp. 377-387, 2022, doi: 10.24425/ace.2022.143044.
  • [6] Y.R. Zheng and F.Y. Dong, Eds., Design Guide of shotcrete support for underground engineering. Beijing: China Railway Press, 1988.
  • [7] E. Hoek and E. T. Brown, “Practical estimates of rock mass strength”, International Journal of Rock Mechanics and Mining Sciences, vol. 34, no. 8, pp. 1165-1186, 1997, doi: 10.1016/S1365-1609(97)80069-X.
  • [8] R.R. Osgoui and P. Oreste, “Elasto-plastic analytical model for the design of grouted bolts in a Hoek-Brown medium”, International Journal For Numerical and Analytical Methods in Geomechanics, vol. 34, no. 16, pp. 1651-1686, 2010, doi: 10.1002/nag.823.
  • [9] A. Serrano, C. Olalla, and I. Reig, “Convergence of circular tunnels in elastoplastic rock masses with nonlinear failure criteria and non-associated flow laws”, International Journal of Rock Mechanics and Mining Sciences, vol. 48, no. 6, pp. 878-887, 2011, doi: 10.1016/j.ijrmms.2011.06.008.
  • [10] S. Kwon, C.S. Lee, S.J. Cho, S.W. Jeon, and W.J. Cho, “An investigation of the excavation damaged zone at the KAERI underground research tunnel”, Tunnelling and underground Space Technology, vol. 24, no. 1, pp. 1-13, 2009, doi: 10.1016/j.tust.2008.01.004.
  • [11] M.J. Leitman and P. Villaggio, “Plastic zone around circular holes”, Journal of Engineering Mechanics, vol. 135, no. 12, pp. 1467-1471, 2009, doi: 10.1061/(ASCE)EM.1943-7889.0000062.
  • [12] L. Zhao, Z. Cui, R. Peng, T. Wei, L. Wang, and D. Liu, “Deformation characteristics and grouting control technology of reused tunnel in a fully mechanized coalface with large mining height”, Applied Sciences, vol. 13, no. 3, art. no. 1951, 2023, doi: 10.3390/app13031951.
  • [13] N.J. Ma and Y.D. Zhang, “A new analysis on ground pressures around openings”, Chinese Journal of Rock Mechanics and Engineering, vol. 15, no. 1, no. 84-89, 1996.
  • [14] A. Fahimifar and H. Soroush, “A theoretical approach for analysis of the interaction between grouted rockbolts and rock masses”, Tunnelling and Underground Space Technology, vol. 20, no. 4, pp. 333-343, 2005, doi: 10.1016/j.tust.2004.12.005.
  • [15] G.S. Yao, J.P. Li, and S.C. Gu, “Analytic solution to deformation of soft rock tunnel considering dilatancy and plastic softening of rock mass”, Rock and Soil Mechanics, vol. 30, no. 2, pp. 463-467, 2009.
  • [16] G. Walton, M. Lato, M. Anschütz, M.A. Perras, and M.S. Diederichs, “Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation-Experience from the Äspö Hard Rock Laboratory in Sweden”, Engineering Geology, vol. 196, pp. 210-221, 2015, doi: 10.1016/j.enggeo.2015.07.010.
  • [17] S.K. Paul, “Numerical models of plastic zones and associated deformations for elliptical inclusions in remote elastic loading-unloading with different R-ratios”, Engineering Fracture Mechanics, vol. 152, pp. 72-80, 2016, doi: 10.1016/j.engfracmech.2015.12.008.
  • [18] L. Chen, X.B. Mao, M. Li, and Y.L. Chen, “Elastoplastic analysis of cracked surrounding rock in deep tunnel based on Drucker-Prager criterion”, Journal of China Coal Society, vol. 42, no. 2, pp. 484-491, 2017, doi: 10.13225/j.cnki.Jccs.2016.6029.
  • [19] Q. Zhang, B. Jiang, and H. Lv, “Analytical solution for a circular opening in a rock mass obeying a three-stage stress-strain curve”, International Journal of Rock Mechanics and Mining Sciences, vol. 86, pp. 16-22, 2016, doi: 10.1016/j.ijrmms.2016.03.013.
  • [20] B. Sun, P. Zhang, R. Wu, M. Fu, and Y. Ou, “Research on the overburden deformation and migration law in deep and extra-thick coal seam mining”, Journal of Applied Geophysics, vol. 190, art. no. 104337, 2021, doi: 10.1016/j.jappgeo.2021.104337.
  • [21] J. F. Zou and Z. Q. Xia, “Closed-form solution for cavity expansion in strain-softening and undrained soil mass based on the unified strength failure criterion”, International Journal of Geomechanics, vol. 17, no. 9, 2017, doi: 10.1061/(ASCE)GM.1943-5622.0000927.
  • [22] G.S. Yao, J.P. Li, and S.C. Gu, “Analytic solution to deformation of soft rock tunnel considering dilatancy and plastic softening of rock mass”, Rock and Soil Mechanics, vol. 30, no. 2, pp. 463-467, 2009.
  • [23] J.L. Pan, Z.N. Gao, and F.H. Ren, “Effect of strength criteria on surrounding rock of circular tunnel considering strain softening and dilatancy”, Journal of China Coal Society, vol. 43, no. 12, pp. 3293-3301, 2018.
  • [24] L.R. Alejano, A. Rodríguez-Dono, and M. Veiga, “Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses”, Tunnelling and Underground Space Technology, vol. 30, pp. 169-182, 2012, doi: 10.1016/j.tust.2012.02.017.
  • [25] Y. Li, S. Cao, N. Fantuzzi, and Y. Liu, “Elasto-plastic analysis of a circular borehole in elastic-strain softening coal seams”, International Journal of Rock Mechanics and Mining Sciences, vol. 80, pp. 316-324, 2015, doi: 10.1016/j.ijrmms.2015.10.002.
  • [26] M. Ranjbarnia, A. Fahimifar, and P. Oreste, “Practical method for the design of pretensioned fully grouted rockbolts in tunnels”, International Journal of geomechanics, vol. 16, no. 1, art. no. 04015012, 2016, doi: 10.1061/ (ASCE)GM.1943-5622.0000464.
  • [27] R. Fei, L. Peng, C. Zhang, J. Zhang, and P. Zhang, “Centrifuge model test of parallel shield underneath high-speed railway tunnel”, Archives of Civil Engineering, vol. 68, no. 3, pp. 661-677, 2022, doi: 10.24425/ace.2022.141909.
  • [28] S. Hao, R. Fei, and J. Yu, “Mechanical characteristics of ultra-shallow buried high-speed railway tunnel in broken surrounding rock during construction”, Archives of Civil Engineering, vol. 68, no. 3, pp. 645-659, 2022, doi: 10.24425/ace.2022.141908.
  • [29] S.L. Chen, Y.N. Abousleiman, and K.K. Muraleetharan, “Closed-form elastoplastic solution for the wellbore problem in strain hardening/softening rock formations”, International Journal of Geomechanics, vol. 12, no. 4, pp. 494-507, 2012, doi: 10.1061/(ASCE)GM.1943-5622.0000157.
  • [30] Z.N. Gao, X.R. Meng, and Z.L. Fu, “Elasto-plastic analysis on surrounding rock of tunnels based on seepage, strain softening and dilatancy”, Journal of Chongqing University, vol. 37, no. 1, pp. 96-101, 2014.
  • [31] D. Palumbo, R. De Finis, F. Ancona, and U. Galietti, “Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements”, Engineering Fracture Mechanics, vol. 181, pp. 65-76, 2017, doi: 10.1016/j.engfracmech.2017.06.017.
  • [32] M.B. Reed, “The influence of out-of-plane stress on a plane strain problem in rock mechanics”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 12, no. 2, pp. 173-181, 1988, doi: 10.1002/nag.1610120205.
  • [33] K.H. Park, “Similarity solution for a spherical or circular opening in elastic-strain softening rock mass”, International Journal of Rock Mechanics and Mining Sciences, vol. 71, pp. 151-159, 2014, doi: 10.1016/j.ijrmms.2014.07.003.
  • [34] L. Cui, J.J. Zheng, R.J. Zhang, and Y.K. Dong, “Elasto-plastic analysis of a circular opening in rock mass with confining stress-dependent strain-softening behaviour”, Tunnelling and Underground Space Technology, vol. 50, pp. 94-108, 2015, doi: 10.1016/j.tust.2015.07.001.
  • [35] M.R. Zareifard, “Ground reaction curve for deep circular tunnels in strain-softening mohr-coulomb rock masses considering the damaged zone”, International Journal of Geomechanics, vol. 20, no. 10, art. no. 04020190, 2020, doi: 10.1061/(ASCE)GM.1943-5622.0001822.
  • [36] F. Huang, H.H. Zhu, Q.W. Xu, Y.C. Cai, and X.Y. Zhuang, “The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis”, Tunnelling and Underground Space Technology, vol. 35, pp. 207-218, 2013, doi: 10.1016/j.tust.2012.06.014.
  • [37] A. Singh, C. Kumar, L.G. Kannan, K.S. Rao, and R. Ayothiraman, “Estimation of creep parameters of rock salt from uniaxial compression tests”, International Journal of Rock Mechanics and Mining Sciences, vol. 107, pp. 243-248, 2018, doi: 10.1016/j.ijrmms.2018.04.037.
  • [38] M.F. Cai, M.C. He, and D.Y. Liu, Eds., Rock mechanics and engineering. Beijing: Science Press, 2013.
  • [39] M.A. Perras and M.S. Diederichs, “Predicting excavation damage zone depths in brittle rocks”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 8, no. 1, pp. 60-74, 2016, doi: 10.1016/j.jrmge.2015.11.004.
  • [40] W.Q. Ma and T.X. Wang, “Instability mechanism and control countermeasure of a cataclastic tunnel regenerated roof in the extraction of the remaining mineral resources: a case study”, Rock Mechanics and Rock Engineering, vol. 52, no. 7, pp. 2437-2457, 2019, doi: 10.1007/s00603-018-1705-9.
  • [41] W. Jing, R. Guo, R.S. Yang, L.W. Jing, and W.P. Xue, “A theoretical analysis of surrounding rock deformation of deep soft rock tunnel based on rock rheology and strain softening”, Journal of Mining & Safety Engineering, vol. 38, no. 3, pp. 538-546, 2021, doi: 10.13545/j.cnki.jmse.2020.0463.
  • [42] W. Jing, S. X. Liu, R.S. Yang, L.W. Jing, and W.P. Xue, “Mechanism of aging deformation zoning of surrounding rock in deep high stress soft rock tunnel based on rock creep characteristics”, Journal of Applied Geophysics, vol. 202, art. no. 104632, 2022, doi: 10.1016/j.jappgeo.2022.104632.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40d8e41f-4ad6-49c3-a7bb-50f09cad8a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.