PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage detection in concrete structures with impedance data and machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to evaluate the effectiveness of machine learning (ML) models in predicting concrete damage using electromechanical impedance (EMI) data. From numerous experimental evidence, the damaged mortar sample with surface-mounted piezoelectric (PZT) material connected to the EMI response was assessed. This work involved the different ML models to identify the accurate model for concrete damage detection using EMI data. Each model was evaluated with evaluation metrics with the prediction/true class and each class was classified into three levels for testing and trained data. Experimental findings indicate that as damage to the structure increases, the responsiveness of PZT decreases. Therefore, we examined the ability of ML models trained on existing experimental data to predict concrete damage using the EMI data. The current work successfully identified the approximately close ML models for predicting damage detection in mortar samples. The proposed ML models not only streamline the identification of key input parameters with models but also offer cost-saving benefits by reducing the need for multiple trials in experiments. Lastly, the results demonstrate the capability of the model to produce precise predictions.
Rocznik
Strony
art. no. e149178
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
  • Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
autor
  • Department of Engineering Management, College of Engineering, Prince Sultan University, PO BOX 66833, Riyadh 11586, Saudi Arabia
  • Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
autor
  • Department of Civil Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
Bibliografia
  • [1] H. Kim, X. Liu, E. Ahn, M. Shin, S.W. Shin, and S.H. Sim, “Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique,” NDT E Int., vol. 104, no. April, pp. 90–97, 2019, doi: 10.1016/j.ndteint.2019.04.004.
  • [2] H. Taha, R.J. Ball, and K. Paine, “Sensing of Damage and Repair of Cement Mortar Using Electromechanical Impedance,” Materials (Basel)., vol. 12, no. 23, p. 3925, 2019, doi: 10.3390/ma12233925.
  • [3] W. Li, S. Fan, S.C.M. Ho, J. Wu, and G. Song, “Interfacial debonding detection in fiber-reinforced polymer rebar–reinforced concrete using electro-mechanical impedance technique,” Struct. Heal. Monit., vol. 17, no. 3, pp. 461–471, 2018, doi: 10.1177/1475921717703053.
  • [4] M.A. DeRousseau, E. Laftchiev, J. R. Kasprzyk, B. Rajagopalan, and W.V Srubar, “A comparison of machine learning methods for predicting the compressive strength of field-placed concrete,” Constr. Build. Mater., vol. 228, p. 116661, 2019, doi: 10.1016/j.conbuildmat.2019.08.042.
  • [5] H. Huang and H. V Burton, “Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning,” J. Build. Eng., vol. 25, p. 100767, 2019, doi: 10.1016/j.jobe.2019.100767.
  • [6] J. Zhang, Y. Sun, G. Li, Y. Wang, J. Sun, and J. Li, “Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups,” Eng. Comput., vol. 38, no. 2, pp. 1293–1307, 2022, doi: 10.1007/s00366-020-01076-x.
  • [7] H.B. Ly, T.T. Le, H.L. Thi Vu, V.Q. Tran, L.M. Le, and B.T. Pham, “Erratum: Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams [Sustainability 12 (2020) (2709)],” Sustain., vol. 12, no. 17, 2020, doi: 10.3390/su12177029.
  • [8] M. Khudhair and N. Gucunski, “Integrating Data from Multiple Nondestructive Evaluation Technologies Using Machine Learning Algorithms for the Enhanced Assessment of a Concrete Bridge Deck,” Signals, vol. 4, no. 4, pp. 836–858, 2023, doi: 10.3390/signals4040046.
  • [9] D. Ai and J. Cheng, “A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network,” Mech. Syst. Signal Process., vol. 183, no. May, p. 109634, 2023, doi: 10.1016/j.ymssp.2022.109634.
  • [10] G. Li, M. Luo, J. Huang, and W. Li, “Early-age concrete strength monitoring using smart aggregate based on electromechanical impedance and machine learning,” Mech. Syst. Signal Process., vol. 186, no. May, p. 109865, 2023, doi: 10.1016/j.ymssp.2022.109865.
  • [11] D. Ai, F. Mo, J. Cheng, and L. Du, “Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks,” Constr. Build. Mater., vol. 385, no. March, p. 131423, 2023, doi: 10.1016/j.conbuildmat.2023.131423.
  • [12] S. Li, X. Zhao, and G. Zhou, “Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network,” Comput. Civ. Infrastruct. Eng., vol. 34, no. 7, pp. 616–634, 2019, doi: 10.1111/mice.12433.
  • [13] Y. Yu, C. Wang, X. Gu, and J. Li, “A novel deep learning-based method for damage identification of smart building structures,” Struct. Heal. Monit., vol. 18, no. 1, pp. 143–163, 2019, doi: 10.1177/1475921718804132.
  • [14] A. Aabid et al., “A review of piezoelectric materials based structural control and health monitoring techniques for engineering structures: challenges and opportunities,” Actuators, vol. 10, no. 5, p. 101, 2021, doi: 10.3390/ act10050101.
  • [15] A. Aabid et al., “A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications,” Sensors, vol. 21, pp. 1–28, 2021, doi: 10.3390/s21124145.
  • [16] F.P. Sun, Z. Chaudhry, C. Liang, and C.A. Rogers, “Truss Structure Integrity Identification Using PZT Sensor-Actuator,” J. Intell. Mater. Syst. Struct., vol. 6, no. 1, pp. 134–139, 1995, doi: 10.1177/1045389X9500600117.
  • [17] G. Park and D.J. Inman, “Impedance-based structural health monitoring,” in Damage Prognosis: For Aerospace, Civil and Mechanical Systems, Wiley, pp. 275–292, 2005.
  • [18] C. Liang, F.P. Sun, and C.A. Rogers, “Coupled Electro-Mechanical Analysis of Adaptive Material Systems – Determination of the Actuator Power Consumption and System Energy Transfer,” J. Intell. Mater. Syst. Struct., vol. 5, no. 1, pp. 12–20, Jan. 1994, doi: 10.1177/1045389X9400500102.
  • [19] V.M. Karbhari and L.S.W. Lee, Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems. Woodhead Publishing Limited, 2009. doi: 10.1533/9781845696825.1.177.
  • [20] OxfordSparks, “What is Machine Learning? – YouTube,” 2017 [Online]. Available: https://www.youtube.com/watch?v=f_uwKZIAeM0.
  • [21] C.S.N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, and R. Wang, “Development and application of a deep learning–based sparse autoencoder framework for structural damage identification,” Struct. Heal. Monit., vol. 18, no. 1, pp. 103–122, 2019, doi: 10.1177/1475921718800363.
  • [22] A.E. Maxwell, T.A. Warner, and F. Fang, “Implementation of machine-learning classification in remote sensing: An applied review,” Int. J. Remote Sens., vol. 39, no. 9, pp. 2784–2817, 2018, doi: 10.1080/01431161.2018.1433343.
  • [23] F. Maselli, G. Chirici, L. Bottai, P. Corona, and M. Marchetti, “Estimation of Mediterranean forest attributes by the application of k-NN procedures to multitemporal Landsat ETM+ images,” Int. J. Remote Sens., vol. 26, no. 17, pp. 3781–3796, 2005, doi: 10.1080/01431160500166433.
  • [24] B. Kim and S. Cho, “Automated multiple concrete damage detection using instance segmentation deep learning model,” Appl. Sci., vol. 10, no. 22, pp. 1–17, 2020, doi: 10.3390/app10228008.
  • [25] Ž. Vujović, “Classification Model Evaluation Metrics,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 599–606, 2021, doi: 10.14569/IJACSA.2021.0120670.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40d4c76d-280c-460a-b358-8f10e7694454
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.