PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remote Sensing Monitoring of Volcanic Ash Clouds Based on PCA Method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Volcanic ash clouds threaten the aviation safety and cause global environmental effects. It is possible to effectively monitor the volcanic ash cloud with the aid of thermal infrared remote sensing technology. Principal component analysis (PCA) is able to remove the inter-band correlation and eliminate the data redundancy of remote sensing data. Taking the Eyjafjallajokull volcanic ash clouds formed on 15 and 19 April 2010 as an example, in this paper, the PCA method is used to monitor the volcanic ash cloud based on MODIS bands selection; the USGS standard spectral database and the volcanic absorbing aerosol index (AAI) are applied as contrasts to the monitoring result. The results indicate that: the PCA method is much simpler; its spectral matching rates reach 74.65 and 76.35%, respectively; and the PCA method has higher consistency with volcanic AAI distribution.
Czasopismo
Rocznik
Strony
432--450
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
autor
  • School of Computer Engineering and Science, Shanghai University, Shanghai, China
Bibliografia
  • [1] Andronico, D., C. Spinetti, A. Cristaldi, and M.F. Buongiorno (2009), Observations of Mt. Etna volcanic ash plumes in 2006: An integrated approach from ground-based and polar satellite NOAA-AVHRR monitoring system, J. Volcanol. Geoth. Res. 180, 2-4, 135-147, DOI:10.1016/j.jvolgeores.2008.11.013.
  • [2] Ellrod, G.P. (2004), Impact on volcanic ash detection caused by the loss of the 12.0 µm “Split Window” band on GOES imagers, J. Volcanol. Geoth. Res. 135, 1-2, 91-103, DOI:10.1016/j.jvolgeores.2003.12.009.
  • [3] Filizzola, C., T. Lacava, F. Marchese, N. Pergola, I. Scaffidi, and V. Tramutoli (2007), Assessing RAT (Robust AVHRR Techniques) performances for volcanic ash cloud detection and monitoring in near real-time: the 2002 eruption of Mt. Etna (Italy), Remote Sens. Environ. 107, 3, 440-454, DOI:10.1016/j.rse.2006.09.020.
  • [4] Flynn, L.P., A.J.L. Harris, and R. Wright (2001), Improved identification of volcanic features using Landsat 7 ETM+, Remote Sens. Environ. 78, 1-2, 180-193, DOI:10.1016/S0034-4257(01)00258-9.
  • [5] Hillger, D.W., and J.D. Clark (2002a), Principal component image analysis of MODIS for volcanic ash. Part 1: Most important bands and implications for future GOES imagers, J. Appl. Meteor. 41, 10, 985-1001, DOI:10.1175/1520-0450(2002)041<0985:PCIAOM>2.0.CO;2.
  • [6] Hillger, D.W., and J.D. Clark (2002b), Principal component image analysis of MODIS for volcanic ash. Part II: Simulation of current GOES and GOESM imagers, J. Appl. Meteor. 41, 10, 1003-1010, DOI: 10.1175/1520-0450(2002)041<1003:PCIAOM>2.0.CO;2.
  • [7] Hillger, D.W., and G.P. Ellrod (2003), Detection of important atmospheric and surface features by employing principal component image transformation of GOES imagery, J. Appl. Meteor. 42, 5, 611-629, DOI: 10.1175/1520-0450(2003)042<0611:DOIAAS>2.0.CO;2.
  • [8] Jiménez-Muñoz, J.C., and J.A. Sobrino (2003), A generalized single-channel method for retrieving land surface temperature from remote sensing data, J. Geophys. Res. 108, D22, 4688-4695, DOI: 10.1029/2003JD003480.
  • [9] Krueger, A.J. (1983), Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer, Science 220, 4604, 1377-1379, DOI:10.1126/science.220.4604.1377.
  • [10] Li, C.F., J.Y. Yin, J.S. Dong, and D. Shen (2013), Monitoring of volcanic ash cloud based on thermal infrared satellite remote sensing, Infrared Technol. 35, 8, 487-491.
  • [11] Li, J., Z.G. Han, H.B. Chen, Z.L. Zhao, and H.Y. Wu (2011), Detection of heavy fog events over North China Plain by using the geostationary satellite data, Remote Sens. Technol. Appl. 26, 2, 186-195 (in Chinese).
  • [12] Lin, C., F. Peng, B.H. Wang, W.F. Sun, and X.J. Kong (2012), Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm, J. Electron. Sci. Technol. 10, 4, 352-357.
  • [13] Liu, Z.W., A,R. Dang, Z.D. Lei, and Y.G. Huang (2003), A retrieval model of land surface temperature with ASTER data and its application study, Progr. Geogr. 22, 5, 507-514 (in Chinese).
  • [14] Mastin, L.G., M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean, A. Durant, J.W. Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C.F. Waythomas (2009), A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res. 186, 1-2, 10-21, DOI: 10.1016/j.jvolgeores.2009.01.008.
  • [15] McCarthy, E.B., G.J.S. Bluth, I.M. Watson, and A. Tupper (2008), Detection and analysis of the volcanic clouds associated with the 18 and 28 August 2000 eruptions of Miyakejima volcano, Japan, Int. J. Remote Sens. 29, 22, 6597-6620, DOI: 10.1080/01431160802168400.
  • [16] Moghtaderi, A., F. Moore, and A. Mohammadzadeh (2007), The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran, J. Asian Earth Sci. 30, 2, 238-252, DOI: 10.1016/j.jseaes.2006.09.004.
  • [17] Qin, Z.H., A. Karnieli, and P. Berliner (2001), A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region, Int. J. Remote Sens. 22, 18, 3719-3746, DOI: 10.1080/01431160010006971.
  • [18] Qu, C.Y., X.J. Shan, and J. Ma (2006), Application of satellite thermal infrared remote sensing in detection of volcano activity, Seismol. Geol. 28, 1, 99-110.
  • [19] Rose, W.I., S. Self, P.J. Murrow, C. Bonadonna, A.J. Durant, and G.G.J. Ernst (2008), Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala, Bull. Volcanol. 70, 9, 1043-1067, DOI: 10.1007/s00445-007-0187-5.
  • [20] Thomas, W., T. Erbertseder, T. Ruppert, M. van Roozendael, J. Verdebout, D. Balis, C. Meleti, and C. Zerefos (2005), On the retrieval of volcanic sulfur dioxide emissions from GOME backscatter measurements, J. Atmos. Chem. 50, 3, 295-320, DOI:10.1007/s10874-005-5544-1.
  • [21] Webley, P., and L. Mastin (2009), Improved prediction and tracking of volcanic ash clouds, J. Volcanol. Geoth. Res. 186, 1-2, 1-9, DOI: 10.1016/j.jvolgeores.2008.10.022.
  • [22] Wen, S.M., and W.I. Rose (1994), Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, J. Geophys. Res. 99, D3, 5421-5431, DOI:10.1029/93JD03340.
  • [23] Yao, Y.J., P. Nan, Z.L. Zhang, and B.S. Li (2007), Application of split window algorithm in land surface temperature retrieval from thermal infrared remote sensing data, J. Lanzhou Univ. Technol. 33, 6, 89-92 (in Chinese).
  • [24] Zhao, Q., Z.L. Xie, H. Li, and X.L. Li (2012), Color-feature extraction of remote sensing image based on principal components analysis and K-means, Microelectron. Comput. 29, 10, 61-68 (in Chinese).
  • [25] Zhu, L., J. Liu, C. Liu, and M. Wang (2011), Satellite remote sensing of volcanic ash cloud in complicated meteorological conditions, Sci. China Earth Sci. 54, 11, 1789-1795, DOI:10.1007/s11430-011-4265-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40cf7b03-529d-4a88-9228-76e09feebff5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.