PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimating erosion, sediment yield, and dam lifetime using revised universal soil loss equation and potential erosion model in the Chichaoua watershed and Boulaouane Dam, High Atlas, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil erosion is a global challenge with significant environmental, social, and economic impacts. This study, conducted in the Chichaoua watershed, aims to quantify soil loss, investigate its causes, and evaluate its effects on the construction of the new Boulaouane dam. Two models were used to quantify potential soil losses: the Revised Universal Soil Loss Equation (RUSLE) and the potential erosion model (PEM). The results indicate an average annual loss of 10.03 t/ha/yr according to RUSLE, while the EPM provides a higher estimate of 27.53 t/ha/yr. These values, exceeding the tolerance threshold, indicate that the watershed substantially contributes to the downstream sediment load, which could impact the hydrological performance and lifespan of the Boulaouane dam. Furthermore, the spatial distribution of soil losses within the Chichaoua watershed is not homogeneous, a heterogeneity that can be explained by the physical characteristics of the study area. This observation highlights the critical need for implementing erosion control measures, especially in upstream areas. This study reveals the intense erosion impacting the Chichaoua watershed, which presents substantial challenges for the sustainable management of the region’s soil and water resources. It underscores the pressing necessity of implementing targeted erosion control strategies, particularly around key infrastructures like the Boulaouane dam.
Twórcy
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
  • Department of Soil Science, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
autor
  • Faculté des Arts et des Sciences (FAFS), Université de Saint-Boniface, 200, Avenue de la Cathédrale, Winnipeg, MB R2H 0H7, Canada
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
autor
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Mghila B.P. 592, Beni Mellal 23000, Morocco
  • Applied Geology and Geoenvironment Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
Bibliografia
  • 1. ABHT, (2013). Presentation of the Tensift Hydraulic Region, Internal Report, 20.
  • 2. ABHT, (2015). Monitoring of water quality in the Tensift basin.
  • 3. Ait Fora A. (1995). Spatial modeling of water erosion in a basin of the Moroccan Rif: validation of the geomatic approach by sedimentology, radioactive traceers and magnetic susceptibility of sediments. PhD Thesis, University of Sherbrooke, Quebec, 231.
  • 4. Al-Mamari, M. M., Kantoush, S. A., Al-Harrasi, T. M., Al-Maktoumi, A., Abdrabo, K. I., Saber, M., & Sumi, T. (2023). Assessment of sediment yield and deposition in a dry reservoir using field observations, RUSLE and remote sensing: Wadi Assarin, Oman. Journal of Hydrology, 617, 128982.
  • 5. Ansar, A., & Azaiez, N. (2020). Qualitative and quantitative aspects of climate change in Ghardaia (Algeria). Human Sciences Journal, 549–565.
  • 6. Argaz A., Darkaoui A. & Bikhtar H., and al. 2019. Using EPM Model and GIS for Estimation of Soil Erosion in Souss Basin, Morocco. Turkish Journal of Agriculture-Food Science and Technology, 7(8), 1228–1232.
  • 7. Arnold J.G., Srinivasan R., Muttiah R.S. et al. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of American Water Resources Association, 34, 73–89.
  • 8. Baiddah, A., Krimissa, S., Hajji, S., Ismaili, M., Abdelrahman, K., El Bouzekraoui, M.,... & Namous, M. (2023). Head-cut gully erosion susceptibility mapping in semi-arid region using machine learning methods: insight from the high atlas, Morocco. Frontiers in Earth Science, 11, 1184038.
  • 9. Badraoui, A., & Hajji, A. (2001). Envasement des retenues de barrages. La Houille Blanche, 87(6–7), 72–75. Benmansour M., Ibn Majah M., Marah H., et al. (2000). Use of the 137 Cs technique in soil erosion in Morocco – Case study of the Zitouna basin in the north. Proceeding of an international Symposium on Nuclear Techniques in Integrated Plant Nutrients, Water and Soil management, IAEA/ FAO, 308–315.
  • 10. Biddoccu, M., Ferraris, S., Opsi, F., & Cavallo, E. (2016). Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil and Tillage Research, 155, 176–189.
  • 11. Borrelli P., Robinson D.A., Fleischer L.R., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 2013.
  • 12. Bouamrane, A., Bouamrane, A., & Abida, H. (2021). Water erosion hazard distribution under a Semi-arid climate Condition: Case of Mellah Watershed, North-eastern Algeria. Geoderma, 403, 115381.
  • 13. Bouhlassa S. & Bouhsane N. (2019). Assessment of areal water and tillage erosion using magnetic susceptibility: the approach and its application in Moroccan watershed. Environmental Science and Pollution Research, 1–15.
  • 14. Bouhlassa S., Moukhchane M. & Aiachi A. (2000). Estimate of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137 Cs technique and calibration models. Acta Geologica Hispanica, 35(3/4), 239–249.
  • 15. Bou-Imajjane, L., Belfoul, M. A., Elkadiri, R., & Stokes, M. (2020). Soil erosion assessment in a semi-arid environment: a case study from the Argana Corridor, Morocco. Environmental Earth Sciences, 79, 1–14.
  • 16. Brown, R.B. (2003). Soil Texture, Soil and Water Science Department, Florida Cooperative. Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Fact Sheet SL29, 8.
  • 17. Bunzll K. & Kracke W. (1988). Cumulative deposition of 137Cs, 238Pu, 239+240 Pu and 241Am from global fallout in soils from forest, grassland and arable land in Bavaria. Journal of Environmental Radioactivity, 8(1), 1–14.
  • 18. Chaaouan, J., Faleh, A., Sadiki, A., Mesrar, H. (2013). Télédétection, SIG et modélisation de l’érosion hydrique dans le bassin versant de l’oued Amzaz, Rif Central. Revue Française de Photogrammétrie et de Télédétection, 203, 19–25. https://doi.org/10.52638/rfpt.2013.26
  • 19. Chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2, 1–10.
  • 20. Damnati B., Chatt A, Hamani M., et al. (2006). The water erosion and its quantification by the radio element 137Cs at the level of the watershed of the Raouz dam (TangerTétouan Region). TANCA-01. Workshop on analytical, nuclear and conventional techniques and their applications. Rabat 8–9 December, 38.
  • 21. Damnati B., Ibrahimi S., Benhardouze O., et al. (2010). Quantification of erosion by excess 137Cs and 210Pb: case of a plot at the basin level of the Nakhla dam (Tetouan Region, Northwestern Morocco). Africa Geoscience Review, 17(3), 215–223.
  • 22. Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International journal of remote sensing, 35(2), 441–453.
  • 23. El Garouani A., Tribak A. & Abahrour M. (2010). Assessment the effects of land-use cover changes on regional soil loss susceptibility using RUSLE model and remote sensing data. Red Books. International Association of Hydrological Sciences Publication, 340, 343–349.
  • 24. El Hafid, D., Zerrouqi, Z., & Akdim, B. (2017). Étude des séquences de sécheresse dans le bassin d’Isly (Maroc oriental). Larhyss Journal, 31, 83–94.
  • 25. El Jazouli A., Barakat A., Khellouk R. and al. 2019. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum ErRbia River (Morocco). Remote Sensing Applications. Society and Environment, 13, 361–374.
  • 26. El Mouatassime S., Boukdir A., Karaoui I. et al. 2019. Modelling of soil erosion processes and runoff for sustainable watershed management: case study oued el Abid watershed, Morocco. Agriculture & Forestry, 65(4), 241–250.
  • 27. Elaloui A., Marrakchi C., Fekri A., et al. 2017. USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 3(3), 873–885.
  • 28. Elbukaou, K., Ezzine, H., Badrahou, M., Rouchdi, M. and Ozer, A. (2005). Remote detection and GIS methodological approach to the evaluation of the potential risk of water erosion in the Oued Srou Basin (Moyen Atlas, Morocco), Geo-Eco-Trop, 29, 25–36.
  • 29. Ezzaouini M.A., Mahé G., Kacimi I. et al. (2020). Comparison of the MUSLE Model and Two Years of Solid Transport Measurement, in the Bouregreg Basin, and Impact on the Sedimentation in the Sidi Mohamed Ben Abdellah Reservoir, Morocco. Water, 12, 1882.
  • 30. Faleh A. & Maktite A. (2014). Map of areas vulnerable to water erosion using the PAP/CAR method and GIS above Allal el fassi dam, medium Atlas (Maroc). Papeles de Geografía, (59–60), 71–82.
  • 31. Fathallah, F.E., Algouti, A., & Algouti, A. (2021). Normalized difference vegetation index (NDVI) of the Chichaoua Watershed-Morocco: Comparison and evolution. Journal of Analytical Sciences and Applied Biotechnology, 3(1), Anal-Sci.
  • 32. Flanagan D.C. & Nearing M.A. (1995). USDA Water Erosion Prediction Project hillslope and watershed model documentation. Nserl Rep, 10, 1–123.
  • 33. Ganasri, B.P., & Dwarakish, G.S. (2015). Study of land use/land cover dynamics through classification algorithms for Harangi catchment area, Karnataka State, India. Aquatic Procedia, 4, 1413–1420.
  • 34. Gavrilović, S. (1972). Engineering of torrents and erosion. Journal of Construction (Special Issue), Belgrade, Yugoslavia.
  • 35. Gavrilovic S. (1966). Methodology for Classification of Erosion Processes and Mapping of Eroded Areas. Stage I, Beograd, Institute Jaroslav Černi.
  • 36. Gavrilovic, S. (1962). A method for estimating of the average annual quantity of sediments according to the potency of erosion. Bull. Fac. For, 26, 151–168.
  • 37. Gavrilovic, S. (1970). Modern ways of calculating the torrential sediment and erosion mapping. Erosion, Torrents and Alluvial Deposits; Yugoslav Committee for International Hydrological Decade: Belgrade, Serbia, 85–100.
  • 38. Gavrilovic, Z. (1988). Use of an empirical method (Erosion Potential Method) for calculating sediment production and transportation in unstudied or torrential streams. In International Conference on River Regime; Hydraulics Research Ltd.: Wallingford, UK, 411–422.
  • 39. Hadri, A., Saidi, M.E.M., Saouabe, T., & El Alaoui El Fels, A. (2021). Temporal trends in extreme temperature and precipitation events in an arid area: case of Chichaoua Mejjate region (Morocco). Journal of Water and Climate Change, 12(3), 895–915. Abdessamad Hadri, Mohamed El Mehdi Saidi, Tarik Saouabeand Abdelhafid El Alaoui El Fels
  • 40. Hembram, T.K., Paul, G.C., & Saha, S. (2019). Comparative analysis between morphometry and geo-environmental factor based soil erosion risk assessment using weight of evidence model: a study on Jainti river basin, eastern India. Environmental processes, 6(4), 883–913.
  • 41. Hession, W.C., & Shanholtz, V.O. (1988). A geographic information system for targeting nonpoint-source agricultural pollution. Journal of Soil and Water conservation, 43(3), 264–266.
  • 42. Hoyos, N. (2005). Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena, 63(1), 85–108.
  • 43. Hssaine, A.A. (2014). Elements on the hydrology of the Atlantic part of the Oud Guir (South-Eastern Morocco) and on the catastrophic flood of 10 October 2008. Physio-Geo. Physical Geography and Environment, 8, 337–354.
  • 44. Ibrahimi, S. (2005). Application of 210Pbexe as an alternative to the use of 137Cs for the study of soil redistribution on cultivated and uncultivated transects, El Hachef and Raouz Basins, northern Morocco, PhD Thesis in Sciences, Abdelmalek Essaadi University, Tangier, Marocco.
  • 45. Issa, L.K., Lech-Hab, K.B.H., Raissouni, A., & El Arrim, A. (2016). Quantitative mapping of soil erosion risk by SIG/USLE approach at Kalaya basin level (Maroc Nord Occidental). J Mater Environ Sci, 7(8), 2778–2795.
  • 46. Jain, M.K., & Das, D. (2010). Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resources Management, 24(10), 2091–2112.
  • 47. KhaliIssa L., Lech-Hab KBH., Raissouni A., et al. (2016). Quantitative mapping of soil erosion risk by SIG/USLE approach at Kalaya Basin Level (Maroc Nord Occidental). Journal of Materials and Environmental Science, 7(8), 2778–2795.
  • 48. Kutner, M.H., Nachtsheim, C.J. & Neter, J. (2004). Applied Linear Regression Models, Fourth edition. McGraw-Hill Irwin, Boston.
  • 49. Lahlou, A. (1994). Envasement des barrages au Maroc. Wallada. Lammadalena N. 2010. Climate change and water resources in the Mediterranean region. The Watchtower of CIHEAM, 12, 1–4.
  • 50. Lazarevic R. (1985). The new method for erosion coefficient determination – Z. Erosion - professional factsheet, 13; 54–61. (In Serbian).
  • 51. Lazarevic, R. (1968). Erosion in the Gvozdacka river basin –supplement to the instructions for erosion map elabora-tion. Bulletin of the Serbian Geographical Society, 49(2), 75–98. (In Serbian).
  • 52. Mandimou, S. (2002). Modelling and mapping of water erosion for the integrated layout of the Moulay Bouchta River Basin (Rif occidental). 3rd cycle memory, ENFI, Salé, 105(3
  • 53. Markhi A., Laftouhi N., GrussonY., et al. (2019). Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica, 67(1), 263–272.
  • 54. Markhi A., Laftouhi N., Soulaimani A., Fniguire F. (2015). Quantification and evaluation of water erosion using the RUSLE model and reporting integrated into a GIS. Application in the watering basin in the high atlas of Marrakech (Maroc). European Scientific Journal October 2015 edition 11(29).
  • 55. Meliho, M., Khattabi, A., Zine El Abidine, A. (2016). Study of water erosion sensitivity in the Urika basin (Haut Atlas, Maroc). First AMRS Congress and 23rd APDR Congress ‘Sustainability of Territories in the Context of Global Changes, 189–196.
  • 56. Mohammed, S., Abdo, H. G., Szabo, S., Pham, Q. B., Holb, I. J., Linh, N. T. T.,... & Rodrigo-Comino, J. (2020). Estimating human impacts on soil erosion considering different hillslope inclinations and land uses in the coastal region of Syria. Water, 12(10), 2786. Montgomery, D. R. (2012). Dirt: The Erosion of Civilizations, with a New Preface. Univ of California press.
  • 57. Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of soil and water conservation, 47(5), 423–428.
  • 58. Mosaid, H., Barakat, A., Bustillo, V., & Rais, J. (2022). Modeling and mapping of soil water erosion risks in the Srou Basin (Middle Atlas, Morocco) using the EPM model, GIS and magnetic susceptibility. Journal of Landscape Ecology, 15(1), 126–147.
  • 59. Ouallali, A., Aassoumi, H., Moukhchane, M., Moumou, A., Houssni, M., Spalevic, V., & Keesstra, S. (2020). Sediment mobilization study on Cretaceous, Tertiary and Quaternary lithological formations of an external Rif catchment, Morocco. Hydrological Sciences Journal, 65(9), 1568–1582.
  • 60. Pandey A., Mathur A., Mishra S.K. et al. (2009). Soil erosion modeling of a Himalayan watershed using RS and GIS. Environmental Earth Sciences, 59(2), 399–410.
  • 61. Paroissien J.B., Darboux F., Couturier A. et al. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soils in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management, 150, 57–68.
  • 62. PDAIRE.ABHT). -ABHT, (1995). The objectives of establishing hydraulic basin agencies. Internal report, 39.
  • 63. Rahhou M., (1999). Erosion in the Central Prefecture, interfluvial zone Leben-Sebou-Ouergha, a continuation of natural evolution, a social production. State Doctoral Thesis, Mohammed V University, Rabat, 300.
  • 64. Rajabi, A.M., Yavari, A., & Cheshomi, A. (2022). Sediment yield and soil erosion assessment by using empirical models for Shazand watershed, a semi-arid area in center of Iran. Natural Hazards, 112(2), 1685–1704.
  • 65. Rawls, W.J., & Brakensiek, D.L. (1982). Estimating soil water retention from soil properties. Journal of the Irrigation and Drainage Division, 108(2), 166–171.
  • 66. Remini B., Leduc C. & Hallouche W. (2009). Évolution des grands barrages en régions arides : quelques exemples algériens. Sécheresse, 20(1), 96–105.
  • 67. Renard K.G., Foster G.R., Weesies G.A. et al. (1991). RUSLE: Revised Universal Soil Loss Equation. Journal of soil and water conservation, 46, 30–33.
  • 68. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yorder D.C., (1996). Predicating soil loss equation (RUSLE). USDA/ARS. ARG. AG. Handbook # 703. Washington. DC.
  • 69. Renard, K.G., & Freimund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of hydrology, 157(1–4), 287–306.
  • 70. Renard, K.G., Foster, G.R., Weessies, G.A., McCool, D.K., Yoder, D.C. (eds). (1997). Predicting Soil Erosion by Water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook 703.
  • 71. RESING AHT GROUP AG Date: November 2016 Final diagnosis of the Chichaoua subbassin).
  • 72. Ritchie J.C. & Machenry J.R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns. Journal of Environmental Quality, 19, 215–233.
  • 73. Roose E. (1994). Introduction to the conservation management of water, biomass and soil fertility (GCES) FAO Pediatric Bulletin. 70, 420.
  • 74. Roose, E.J. and Lelong, F. (1976). The factors of water erosion in tropical Africa study on small experimental plots of soil. Journal of Physical Geography and Dynamic Geology, XVIII(4), 365–374.
  • 75. Rouichi H. (1996). Erosion processes and factors in the Bouregreg basin (s.s) sedimentological approach to the quantification of erosion. Doctoral thesis, Mohamed V University, Rabat.
  • 76. Sabir, M., Roose, E., Machouri N., & Nouri, A. (2002). Rural management of natural resources in two terroirs of the Mediterranean mountains of the Western Rif. Bulletin of the network erosion, IRD, Montpellier, 21, 456–471.
  • 77. Sadiki A., Faleh A., Navas A. et al. (2007). Assessing soil erosion and control factors by the radiometric technique in the Boussouab catchment, Eastern Rif, Morocco. Catena, 71(1), 13–20.
  • 78. Sadiki, A., Bouhlassa, S., Auajjar, J., Faleh, A., & Macaire, J.J. (2004). Utilisation d’un SIG pour l’évaluation et la cartographie des risques d’érosion par l’Equation universelle des pertes en sol dans le Rif oriental (Maroc): cas du bassin versant de l’oued Boussouab. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 26(2004), 69–79.
  • 79. Sadiki, A., Faleh, A. Zêzere, J. L., & Mastass, H. (2009). Quantification of Erosion in Nappes in the Upper Basin of the Oued Sahla-Rif Central Morocco. Geographic Specifications, 6, 59–70.
  • 80. Salma, K., Ahmed, A., Abdellah, A., & Akram, E.G. (2023). Quantification of water erosion using empirical models RUSLE and EPM in the Rheraya basin in the High Atlas of Marrakech. Disaster Advances, 16(5), 19–28.
  • 81. Shin G.J. (1999). Department of Civil Engineering, Gang-won National University, Ph.D. dissertation, The study of soil erosion analysis in watershed using GIS.
  • 82. Shin, S. S., Park, S. D., Cho, J. W., & Lee, K. S. (2008). Effects of vegetation recovery for surface runoff and soil erosion in burned mountains, Yangyang. KSCE Journal of Civil and Environmental Engineering Research, 28(4B), 393–403.
  • 83. Stone, R.P. and Hillborn D. (2000). Universal Soil Loss Equation, Ontario, Canada, Ontario Ministry of Agriculture and Food (OMAFRA).
  • 84. Tahiri M., Tabyaoui H., El Hammichi F., et al. (2014). Evaluation and quantification of erosion and sedimentation based on the RUSLE, MUSLE and integrated GIS deposition models. Application to the Oued Sania Basin (Bassin de Tahaddart, Rif nord occidental, Maroc). European Journal of Scientific Research, 125(2), 157–178.
  • 85. Tahiri, M., Tabyaoui, H., El Hammichi, F., Achab, M., Tahiri, A., & El Hadi, H. (2017). Quantification de l’érosion hydrique et de la sédimentation à partir de modèles empiriques dans le bassin versant de Tahaddart (Rif nord occidental, Maroc). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, 39, 87–101.
  • 86. Thompson R., Stober J.C., Turner G J. et al. (1980). Environmental applications of magnetic measurements. Science, 207, 481–486.
  • 87. Vanoni, V.A. (1975). River dynamics. Advances in applied mechanics, 15, 1–87.
  • 88. Walling, D.E., & Webb, B.W. (1996). Erosion and sediment yield: a global overview. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 236, 3–20.
  • 89. Williams, J.R. (1977). Sediment delivery ratios determined with sediment and runoff models.
  • 90. Wischmeier V.H. & Smith D.D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. United States Department of Agriculture in cooperation with Purdue Agricultural Experiment Station. United States Department of Agriculture, Washington. Agriculture Handbook 282.
  • 91. Wischmeier W.H and Smith, D.D. (1981). Predicting rainfall erosion losses. a guide to conservation planning. Supplement to Agriculture Handbook No. 537, USDA, Washington. 58.
  • 92. Wischmeier, W.H., Smith, D.D., and Uhland R.E. (1958). Evaluation of factors in the soil-loss equation. Agricultural Engineering 39, 458–462.
  • 93. Xinbao Z., Walling D.E., Mingy F., et al. (2003). 210Pbex depth distribution in soil and calibration models for assessment of soil erosion rates from 210Pbex measurements. Chinese Journal, 48(8), 813–818.
  • 94. Yjjou M., Bouabid R., El Hmaidi A et al. (2014). Modeling of water erosion via GIS and the universal soil loss equation at the level of the Oum Er-Rbia watercourse. The International Journal of Engineering and Science (IJES), 3(8) 83–91.
  • 95. Yjjou, M., Bouabid, R., El Hmaidi, A., and Essahlaoui, A. (2012). Topographic and climate characterization via GIS of the Oum Er-Rbia basin above the El Hansali dam (Middle Atlas SW, Morocco), Journal of Hydrocarbons Mines and Environmental Research, 3(2), 104–109.
  • 96. Zahnoun, A.A., Makhchane, M., Chakir, M., Al Karkouri, J., & Watfae, A. (2019). Estimation and cartography the water erosion by integration of the Gavrilovic “EPM” model using a GIS in the Mediterranean watershed: Lower Oued Kert watershed (Eastern Rif, Morocco). International Journal of Advance Research, Ideas and Innovations in Technology, 5(6), 367–374.
  • 97. Zahnoun, A.A., Makhchane, M., Chakir, M., Al Karkouri, J., & Watfae, A. (2019). Estimation and cartography the water erosion by integration of the Gavrilovic “EPM” model using a GIS in the Mediterranean watershed: Lower Oued Kert watershed (Eastern Rif, Morocco). International Journal of Advance Research, Ideas and Innovations in Technology, 5, 367–374.
  • 98. Zhang X.C. (2017). Evaluating water erosion prediction project model using cesium-137-derived spatial soil redistribution data. Soil Science Society of America Journal, 179–188.
  • 99. Zhang Y., Zhang Z., Xue S., Wang R., Xiao M. (2020). Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels. Environmental Earth Sciences, 79, 1–14.
  • 100. Zouagui A. (2010). Application of isotopic techniques (137Cs) to the estimation of water erosion in the watershed of My Bouchta, Western Rif, Morocco. 3rd cycle memory, ENFI, 81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40cf2b64-7926-4db1-a3fa-f80203498bc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.