PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of limit values of siliceous fly ash content on the durability of concrete structures in relation to exposure classes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ granicznych zawartości popiołu krzemionkowego na trwałość konstrukcji betonowych w odniesieniu do klas ekspozycji
Języki publikacji
EN
Abstrakty
EN
The paper concerns the use of limit value of siliceous fly ash content in concrete structures, with the application of various types of cements - based on the current standards and taking into consideration the requirements concerning current exposure classes. The conclusions were based on a review of literature, the results of scientific research, conclusions from expert opinions and buildings and structures supervision reports. In summary, it has been concluded that the use of limit content of siliceous fly ashes may result in negative changes in the properties of composites, which should be ruled out or confirmed by appropriate tests, taking into account the precisely defined composition of concrete, cement and the applied additives and admixtures. It has been emphasised that the problem concerns composites with the increased and limit values of fly ash content, especially as regards cements with the lowered content of clinker and high content of additives and admixtures (affecting the physical and mechanical properties of cement composites). Attention has been drawn to the need to modify the exposure classes, to focus on the requirements concerning the properties of concrete and not the composition - in order to achieve the expected durability.
PL
Praca dotyczy problematyki stosowania granicznych zawartości popiołu krzemionkowego w konstrukcjach betonowych, przy zastosowaniu różnego rodzaju cementów - na podstawie obowiązujących norm, z uwzględnieniem wymagań klas ekspozycji betonu. Wnioski oparto na przeglądzie literatury [1-26], wynikach badań naukowych [13-15], wniosków z ekspertyz i nadzorów obiektów budowlanych [22]. W podsumowaniu stwierdzono, że stosowanie granicznych wartości popiołów krzemionkowych może prowadzić do niekorzystnych zmian we właściwościach kompozytów, co należy wykluczyć lub potwierdzić stosownymi badaniami, z uwzględnieniem precyzyjnie określonego składu betonu, cementu oraz stosowanych dodatków i domieszek. Podkreślono, że problem dotyczy kompozytów z podwyższoną oraz graniczną zawartość popiołu, szczególnie w odniesieniu do cementów z mniejszą zawartością klinkieru oraz dużą zawartością dodatków i domieszek (kształtujących właściwości fizyko-mechaniczne kompozytów cementowych). Zwrócono uwagę na potrzebę modyfikowania klas ekspozycji, w kierunku wymagań w zakresie właściwości betonu, a nie składu - w celu uzyskania założonej trwałości.
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
Bibliografia
  • 1. Górażdże Cement, Cements with the addition of blast furnace slag. Types, properties, application, (in Polish) 1-33.
  • 2. Górażdże Cement, Fly ash as type II additive in concrete composition. (in Polish) Vade Mecum of Concrete Process Engineer (www.gorazdze.pl ) 1-6.
  • 3. L. Kucharska, D. Logoń, Influence of the composition of matrices in HPFRCC of the effects of their ageing. Non- Traditional Cement and Concrete II. Proceedings of the international symposium, Brno, Brno University of Technology, 344-353, 2005
  • 4. D. Logoń, FSD cement composites as a substitute for continuous reinforcement. W: Brittle matrix composites 11 : proceedings of the Eleventh International Symposium on Brittle Matrix Composites BMC-11, Warsaw, Poland, 28-30 September 251-260, 2015.
  • 5. A.M. Neville, Concrete Properties. (in Polish) The Association of Cement Manufacturers. Krakow 2012.
  • 6. A.K. Saha, Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research 28, 25-31, 2018.
  • 7. O. Kayali, Fiber reinforced high volume fly ash concrete. Materials and Structures, 37, 318-327, 2004.
  • 8. D. Logoń, Hybrid reinforcement in SRCC concrete. SCMT3 Third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, August 18-21, 2013 : proceedings/Japan Concrete Institute, Coventry University, University of Wisconsin Milwaukee, 1-8, 2013.
  • 9. A. Mardani-Aghabaglou, O. Andic-Cakir, K. Ramyar, Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cement & Concrete Composites 37, 259-266, 2013.
  • 10. A.M. Rashad, A brief on high-volume Class F fly ash as cement replacement - A guide for Civil Engineer. International Journal of Sustainable Built Environment 4, 278-306, 2015.
  • 11. S.H. Gebler, P. Klieger, Effect of fly ash on physical properties of concrete, in Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol.1, Ed.V.M. Malhotra, ACI SP-91, Detroit, Michigan, 1-50, 1986.
  • 12. I. Odler, Final report od Task Group 1, 68-MMH Technical Committee on Strength of Cement, Materials and structures, 24, Nr 140, 143-57, 1991.
  • 13. Z. Giergiczny, Fly ash properties and concrete durability (In Polish). Technologies, July-September, 44-48, 2007.
  • 14. Z. Giergiczny, The effect of fluidal and siliceous fly ashes on the properties of contemporary construction binders and cement composites (in Polish), Series: Civil Engineering, Monography 325, Krakow University of Technology, Krakow 2006.
  • 15. A. Nowak-Michta, Water-binder Ratio Influence on De-icing Salt Scaling of Fly Ash Concretes. 11th International Conference on Modern Building Materials, Structures and Techniques, MBMST 2013. Procedia Engineering 57, 823-829, 2013.
  • 16. A. Oner, T.S. Akyuz, R. Yildiz, An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research 35 1165-1171, 2005.
  • 17. PN-EN 206+A1:2016 Concrete: Requirements, properties, production and compliance. (in Polish)
  • 18. PN-EN 450-1+A1:2007 Fly ash for concrete - Part 1: Definitions, requirements and compliance criteria. (in Polish)
  • 19. PN-EN 197-1:2012 Cement. Part 1: Composition, requirements, and compliance criteria concerning common use cements. (in Polish)
  • 20. PN-B-06265:2004. National supplements PN-EN 206-1:2003 Concrete - Part 1: Requirements, properties, production and compliance. (in Polish)
  • 21. CEN TC 104/SC1., Survey of national requirements used in construction with EN 2006-1:2000; 2006.
  • 22. A. Kmita, S. Kostecki, D. Logoń, M.P. Musiał, W. Pawlak, W. Rędowicz, Execution problems connected with the construction of concrete dam in Niedowo. (in Polish) Building Materials, No. 9, 71-73, 2015.
  • 23. O. Kayali, M.A. Sharfuddin, Assessment of high volume replacement fly ash concrete - Concept of performance index. Construction and Building Materials 39, 71-76, 2013.
  • 24. Y. Li, R. Wang, S. Li, Y. Zhao, Y. Qin, Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulphate attack. Construction and Building Materials 166, 23-34, 2018.
  • 25. D. Wang, X. Zhou, B. Fue, L. Zhang, Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Construction and Building Materials 169, 740-747, 2018.
  • 26. M.A. Glinicki, The methods of quantitative and qualitative assessment of the air entrainment of concrete (in Polish), II Science and Technology Symposium “Concrete Durability”, Górażdże Cement, Krakow 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40ccf422-078c-439d-a56a-c290441a8fb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.