Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Efficiency of agitation was considered for different physical systems on the basis of our own experimental studies on homogenisation, heat and mass transfer as well as gas hold-up. Measurements were performed for different physical systems: Newtonian liquids of low and higher viscosity, pseudoplastic liquid, gas–liquid and gas–solid–liquid systems agitated in vessels of the working volume from 0.02 m3 to 0.2 m3. Agitated vessels of different design were equipped with a high-speed impeller (10 impellers were tested). Comparative analysis of the experimental results proved that energy inputs (power consumption) should be taken into account as a very important factor when agitation efficiency is evaluated in order to select a proper type of equipment. When this factor is neglected in the analysis, intensification of the process can be estimated only.
Czasopismo
Rocznik
Tom
Strony
139–--156
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Busciglio A., Opletal M., Moucha T., Montante G., Paglianti A., 2017. Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans., 57, 1273–1278. DOI: 10.3303/CET1757213.
- 2. Cudak M., 2016. Experimental and numerical analysis of transfer processes in a biophase–gas–liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.
- 3. Cudak M., 2020. The effect of vessel scale on gas hold-up in gas–liquid systems. Chem. Process Eng., 41, 4, 241–256. DOI: 10.1515/cpe-2016-0005.
- 4. Cudak M., Galego Zarosa R., Lopez Vazquez I., Karcz J., 2019. An effect of different factors on the produc tion of mechanically agitated multiphase biophase–gas–liquid systems. Chem. Eng. Trans., 74, 1021–1026. DOI: 10.3303/CET1974171.
- 5. Cudak M., Kiełbus-Rąpała A., Major-Godlewska M., Karcz J., 2016. Influence of different factors on momentum transfer in mechanically agitated multiphase systems. Chem. Process Eng., 37, 41–53. DOI: 10.1515/cpe-2016-0005.
- 6. Harnby N., Edwards M.F., Nienow A.W., 1997. Mixing in the process industries. Butterworth Co Ltd, London.
- 7. Kamieński J., 2004. Agitation of multiphase systems (in Polish), WNT, Warszawa.
- 8. Karcz J., Cudak M., 2002. Efficiency of the heat transfer process in a jacketed agitated vessel equipped with an eccentrically located impeller. Chem. Pap., 56, 6, 382–386.
- 9. Karcz J., Cudak M., Szoplik J., 2005. Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chem. Eng. Sci., 60, 2369–2380. DOI: 10.1016/j.ces.2004.11.018.
- 10. Karcz J., Major M., 2001. Experimental studies of heat transfer in an agitated vessel equipped with vertical tubular coil (in Polish). Inż. Chem. i Proc., 22, 445–459.
- 11. Kiełbus-Rąpała A., 2006. The studies of transfer processes in a mechanically agitated three-phase liquid–gas–solid system (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
- 12. Kiełbus-Rąpała A., Karcz J., 2009. Influence of suspended solid particles on gas–liquid mass transfer coefficient in a system stirred by double impellers. Chem. Pap., 63, 2, 188–196. DOI: 10.2478/s11696-009-0013-y.
- 13. Kiełbus-Rąpała A., Rapisarda A., Karcz J., 2019. Experimental analysis of conditions of gas–liquid–floating particles system production in an agitated vessel equipped with two impellers. Chem. Eng. Trans., 74, 1027–1032. DOI: 10.3303/CET1974172.
- 14. Kracik T., Petricek R., Moucha T., 2020. Mass transfer in coalescent batch fermenters with mechanical agitation. Chem. Eng. Res. Des., 160, 587–592. DOI: 10.1016/j.cherd.2020.03.015.
- 15. Kuncewicz Cz., 2012. Mixing of high viscosity liquids: Process principles (in Polish). Łódź University of Technol ogy, Łódź.
- 16. Lee B.W., Dudukovic M.P., 2014. Determination of flow regime and gas hold-up in gas–liquid stirred tanks. Chem. Eng. Sci., 109, 264–275. DOI: 10.1016/j.ces.2014.01.032.
- 17. Littlejohns J.V., Daugulis A.J., 2007. Oxygen transfer in a gas–liquid system containing solids of varying oxygen affinity. Chem. Eng. J., 129, 67–74. DOI: 10.1016/j.cej.2006.11.002.
- 18. Major-Godlewska M., Karcz J., 2018. Power consumption for an agitated vessel equipped with pitched blade turbine and short baffles. Chem. Pap., 72, 1081–1088. DOI: 10.1007/s11696-017-0346-x.
- 19. Michalska M., 2001. Heat transfer in a stirred tank equipped with the vertical tubular coil and rotating agitator (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
- 20. Nagata S., 1975. Mixing. Principles and applications, Kodansha Ltd. Tokyo.
- 21. Novak V., Rieger F., 1994. Mixing in unbaffled vessel. 8 𝑡 ℎ European Conference on Mixing, Cambridge, 21–23.09.1994, ICHEME Symposium Series, 136, 511–518.
- 22. Oldshue J.Y., 1983. Fluid mixing technology. McGraw-Hill, New York
- 23. Ozkan O., Calimli A., Berber R., Oguz H., 2000. Effect on inert solid particles at low concentrations on gas–liquid mass transfer in mechanically agitated reactors. Chem. Eng. Sci., 55, 2737–2740. DOI: 10.1016/S0009-2509 (99)00532-1.
- 24. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing: Science and Practice. Wiley.
- 25. Petera K., Dostal M., Verisova M., Jirout T., 2017. Heat transfer at the bottom of a cylindrical vessel impinged by a swirling flow from an impeller in a draft tube. Chem. Biochem. Eng. Q., 31, 343–352. DOI: 10.15255/CABEQ. 2016.1057.
- 26. Petricek R., Moucha T., Rejl F.J., Valenz L., Haidl J., Cmelikova T., 2018. Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf., 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
- 27. Rosa V.S., Torneiros D.L.M., Maranhão H.W.A., Moraes M.S., Taqueda M.E.S., Paiva J.L., de Moraes Júnior D., 2020. Heat transfer and power consumption of Newtonian and non-Newtonian liquids in stirred tanks with vertical tube baffles. Appl. Therm. Eng., 176, 115355, 1–24. DOI: 10.1016/j.applthermaleng.2020.115355.
- 28. Stręk F., 1981. Agitation and agitated vessels (in Polish). WNT, Warszawa.
- 29. Szoplik J., 2004. The studies of the mixing time in a stirred tank with an eccentrically located impeller (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
- 30. Szoplik J., Karcz J., 2005. An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chem. Pap., 59, 6a, 373–379.
- 31. Tatterson G.B., 1991. Fluid mixing and gas dispersion in agitated tanks. McGraw Hill Inc, Tokyo.
- 32. Zwietering T.N., 1958. Suspending of solids particles in liquid by agitation. Chem. Eng. Sci., 8, 244–253. DOI: 10.1016/0009-2509(58)85031-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40cb9cb9-3f97-4251-a2b3-fa0ea5239157