PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of a Carbon Fiber Prosthetic Running Blade for Enhanced Reliability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the development of a reliable prosthetic running blade primarily composed of carbon fiber. The reliable performance of novel prosthetic running blades has been evaluated by mechanical testing and finite element numerical modeling. Theexperimental analysis confirmed that these blades exhibit superior suitability for high-impact activities, demonstrating reliable load-bearing capacity and effective shock absorption properties. The tensile testing exhibited a linear elastic behavior of the composite material up to a strain of 0.075 mm/mm. Further, it was found that stress concentration areas and fracture points within the blade structure. Furthermore, numerical results revealed a maximum deflection of 29.60 mm that the blade can achieve. The kinetic energy loss during impact demonstrated an 8.5% decrease in blade kinetic energy, with the highest loss occurring at Vy = 30 m/s. Ultimately, this research aims to enhance the reliability, durability, and safety of prosthetic running blades, empowering athletes to reach new heights in sports.
Rocznik
Strony
art. no. 172668
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;, Saudi Arabia
  • The King Salman Center for Disability Research, Riyadh, Saudi Arabia, Saudi Arabia
  • Department of Mechanical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;, Saudi Arabia
  • The King Salman Center for Disability Research, Riyadh, Saudi Arabia, Saudi Arabia
  • Center of Excellence for Research in Engineering Material (CEREM), King Saud University, Riyadh 11451, Saudi Arabia
  • Department of Mechanical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;, Saudi Arabia
  • The King Salman Center for Disability Research, Riyadh, Saudi Arabia, Saudi Arabia
Bibliografia
  • 1. Abood SH, Faidh-Allah MH. Analysis of Prosthetic Running Blade of Limb Using Different Composite Materials. Journal of Engineering. 2019;25(12):15–25. https://doi.org/10.31026/j.eng.2019.12.02
  • 2. Balaramakrishnan TM, Natarajan S, Sujatha S. Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure. Med Eng Phys. 2021;92. https://doi.org/10.1016/j.medengphy.2021.04.006
  • 3. Barnett CT, De Asha AR,Skervin TK, Buckley JG, Foster RJ. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users. Gait Posture. 2022;98. https://doi.org/10.1016/j.gaitpost.2022.09.008
  • 4. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S. Immediate Effects of a New Microprocessor-Controlled Prosthetic Knee Joint: A Comparative Biomechanical Evaluation. Arch Phys Med Rehabil. 2012 Mar 1;93(3):541–9. https://doi.org/10.1016/j.apmr.2011.10.017
  • 5. Bi SS, Zhou XD, Marghitu DB. Impact modelling and analysis of the compliant legged robots. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2012;226(2):85–94. https://doi.org/10.1177/1464419312441451
  • 6. Che Me R, Ibrahim R, Md. Tahir P. Natural based biocomposite material for prosthetic socket fabrication. ALAM CIPTA, International Journal on Sustainable Tropical Design Research & Practice. 2012;5(1).
  • 7. Coombes AGA, Maccoughlan J. Development and testing of thermoplastic structural components for modular prostheses. Prosthet Orthot Int. 1988;12(1):19–40. https://doi.org/10.3109/03093648809079387
  • 8. Groothuis A, Houdijk H. The Effect of Prosthetic Alignment on Prosthetic and Total Leg Stiffness While Running With Simulated Running-Specific Prostheses. Front Sports Act Living. 2019;1. https://doi.org/10.3389/fspor.2019.00016https://doi.org/10.3389/fspor.2019.00016
  • 9. Hameed MI, Abdul A, Ali H. Finite Element Design and Manufacturing of a Woven Carbon Fiber Prosthetic Foot. Association of Arab Universities Journal of Engineering Sciences. 2022;29(2).
  • 10. Ismail R, Paras Utami D, Arid Irfai M, Jamari J, Bayuseno AP. Mechanical properties of Carbon-matrix composites for a blade runner’s artificial leg. Cogent Eng. 2021;8(1). https://doi.org/10.1080/23311916.2021.1923382
  • 11. Kathrotiya D, Yusuf A, Bhagchandani RK, Gupta S. A Study for the development of prosthetic foot by additive manufacturing. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2023;45(3). https://doi.org/10.1007/s40430-023-04107-y
  • 12. Kitila LG, Wolla DW. Fabrication, characterization, and simulation of hybrid flax-sisal fiber reinforced epoxy composite for prosthetic limb socket application. J Compos Mater. 2022;56(10). https://doi.org/10.1177/00219983221080890
  • 13. Lee WCC, Zhang M, Boone DA, Contoyannis B. Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket. J Rehabil Res Dev. 2004 Nov;41(6 A):775–86. https://doi.org/10.1682/JRRD.2004.01.0003
  • 14. Maitland ME, Allyn KJ, Ficanha EM, Colvin JM, Wernke MM. The Effect of Single and Multiple Split-Toe Designs on Cross-Slope Adaptability of Prosthetic Feet: A Finite Element Simulation Study. Journal of Prosthetics and Orthotics. 2023;35(1). https://doi.org/10.1097/JPO.0000000000000427
  • 15. Maitland ME, Allyn KJ, Ficanha EM, Colvin JM, Wernke MM. Finite Element Simulation of Frontal Plane Adaptation Using Full-Foot, Split-Toe, and Cam-Linkage Designs in Prosthetic Feet. Journal of Prosthetics and Orthotics. 2022;34(1). https://doi.org/10.1097/JPO.0000000000000363
  • 16. Manufacturing of personalized prosthetic leg using solid modeling and 3d printing. Letters in Applied NanoBioScience. 2020;9(1). https://doi.org/10.33263/LIANBS91.892896
  • 17. Meziani Y, Morère Y, Hadj-Abdelkader A, Benmansour M, Bourhis G. Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton. Control Eng Pract. 2021 Jun 1;111. https://doi.org/10.1016/j.conengprac.2021.104804
  • 18. Millstein S, Bain D, Hunter GA. A review of employment patterns of industrial amputees—factors influencing rehabilitation. Prosthet Orthot Int. 1985;9(2):69–78. https://doi.org/10.3109/03093648509164708
  • 19. Noroozi S, Sewell P, Rahman AGA, Vinney J, Chao OZ, Dyer B. Modal analysis of composite prosthetic energy-storing-and-returning feet: An initial investigation. Proc Inst Mech Eng P J Sport Eng Technol. 2013;227(1):39–48. https://doi.org/10.1177/1754337112439274
  • 20. Ouarhim W, Ait-Dahi M, Bensalah MO, el Achaby M, Rodrigue D, Bouhfid R, et al. Characterization and numerical simulation of laminated glass fiber–polyester composites for a prosthetic running blade. Journal of Reinforced Plastics and Composites. 2021;40(3–4):118–33. https://doi.org/10.1177/0731684420949662
  • 21. Phillips SL, Craelius W. Material properties of selected prosthetic laminates. Journal of Prosthetics and Orthotics. 2005 Jan;17(1):27–34. https://doi.org/10.1097/00008526-200501000-00007
  • 22. Rahman M, Bennett T, Glisson D, Beckley D, Khan J. Finite element analysis of prosthetic running blades using different composite materials to optimize performance. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 2014;10(1):1–14. https://doi.org/10.1115/IMECE2014-37293
  • 23. Richard V, Lamberto G, Lu TW, Cappozzo A, Dumas R. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study. PLoS One. 2016 Jun 1;11(6). https://doi.org/10.1371/journal.pone.0157010
  • 24. Sancisi N, Parenti-Castelli V. A sequentially-defined stiffness model of the knee. Mech Mach Theory. 2011 Dec;46(12):1920–8. https://doi.org/10.1016/j.mechmachtheory.2011.07.006
  • 25. Schäfer M, Baumeister T. Prosthetic fitting following amputations on the foot. Vol. 17, Fuss und Sprunggelenk. 2019. https://doi.org/10.1016/j.fuspru.2019.07.003
  • 26. Seel T, Raisch J, Schauer T. IMU-based joint angle measurement for gait analysis. Sensors (Switzerland). 2014 Apr 16;14(4):6891–909. https://doi.org/10.3390/s140406891
  • 27. Shepherd MK, Gunz D, Clites T, Lecomte C, Rouse EJ. Designing Custom Mechanics in Running-Specific Prosthetic Feet via Shape Optimization. IEEE Trans Biomed Eng. 2023;70(2). https://doi.org/10.1109/TBME.2022.3202153
  • 28. Siddiqui MIH, Arifudin L, Alnaser IA, Alluhydan K. Numerical Investigation on the Performance of Prosthetic Running Blades byUsing Different Materials. Journal of Disability Research. 2023;2(1):6–13. https://doi.org/10.57197/JDR-2023-0001
  • 29. Singh Sidhu HJ, Kumar S. Design and Fabrication of Prosthetic Leg. a Journal of Composition Theory. 2019;XII(VII).
  • 30. Sundararaj S, Subramaniyan G v. Structural design and economic analysis of prosthetic leg for below and above knee amputation. Mater Today Proc [Internet]. 2020;37(Part 2):3450–60. Available from: https://doi.org/10.1016/j.matpr.2020.09.331
  • 31. Tabucol J, Brugo TM, Povolo M, Leopaldi M, Oddsson M, Carloni R, et al. Structural fea-based design and functionality verification methodology of energy-storing-and-releasing prosthetic feet. Applied Sciences (Switzerland). 2022;12(1). https://doi.org/10.3390/app12010097
  • 32. Talla HK, Oleiwi JK, Hassan AKF. Performance of athletic prosthetic feet made of various composite materials with pmma matrix: numerical and theoretical study. Revue des Composites et des Materiaux Avances. 2021;31(4):257–64. https://doi.org/10.18280/rcma.310410
  • 33. Yang X, Zhao R, Solav D, Yang X, Lee DRC, Sparrman B, et al. Material, design, and fabrication of custom prosthetic liners for lower-extremity amputees: A review. Med Nov Technol Devices. 2023;17. https://doi.org/10.1016/j.medntd.2022.100197
  • 34. Yasser A. Design and Structural Analysis of Composite Prosthetic Running Blades for Athletes: A case of dynamic explicit analysis using Abaqus CAE. 2020;(June). Available from: https://www.researchgate.net/publication/342336561DesignandStructuralAnalysisofCompositeProstheticRunningBladesforAthletesAcaseofdynamicexplicitanalysisusingAbaqusCAE
  • 35. Yusof KH, Zulkipli MA, Ahmad AS, Yusri MF, Al-Zubaidi S, Mohammed MN. Design and Development of Prosthetic Leg with a Mechanical System. In: 2021 IEEE 12th Control and System Graduate Research Colloquium, ICSGRC 2021 -Proceedings. 2021. https://doi.org/10.1109/ICSGRC53186.2021.9515198
  • 36. Zadpoor AA, Asadi Nikooyan A, Reza Arshi A. A model-based parametric study of impact force during running. J Biomech. 2007;40(9). https://doi.org/10.1016/j.jbiomech.2006.09.016
  • 37. Zhang T, Bai X, Liu F, Fan Y. Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study. Gait Posture. 2019 Jun 1;71:219–26. https://doi.org/10.1016/j.gaitpost.2019.04.026
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40cb8597-d50c-4499-b3cb-50b6f6dc2aba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.