PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Heavy Metal Inhalation Risks in Urban Environments in Poland: A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, heightened air pollution characterized by elevated levels of particulate matter and potentially toxic metals has become a prominent concern, particularly in densely populated urban areas, which may pose a threat to the health of the population. The present study aims to conduct a comprehensive health risk assessment of heavy metals exposure via inhalation, with a focus on submicron particles (PM1), in two major cities of Poland - Warsaw and Zabrze. These cities were selected due to their distinct levels of urbanization and industrialization. Non-carcinogenic and carcinogenic risks assessment was performed for children and adults. The carcinogenic risk was evaluated for As, Cd, Cr(VI), Ni, Pb, and Co, classified as carcinogens, the non-carcinogenic risk evaluation encompassed a broader range of metals, including V, Mn, Cu, Zn, and Mg, aiming to comprehensively understand health exposure. The results highlight elevated carcinogenic risk in Zabrze, primarily linked to industrial activities and ongoing emissions. Notably, Ni, As, and Cr(VI) exceed safe limits, underscoring the need for targeted interventions. Moreover, non-carcinogenic risks reveal Zabrze’s heightened respiratory health risks, compared to Warsaw. Despite Warsaw’s lower non-carcinogenic risk values, both cities recorded Ni and Mg concentrations exceeding safe limits. This indicates that Zabrze faces higher health risks from heavy metal exposure due to ongoing pollution sources. In contrast, Warsaw, the capital city and a major urban centre, demonstrates better air quality but still requires continuous monitoring and pollution control measures.
Rocznik
Strony
330--340
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland
autor
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland
  • Fire University, Faculty of Fire Safety Engineering, 52/54 Słowackiego St., 01-629 Warsaw, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, 34 Skłodowska-Curie St., 41-819 Zabrze, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland
  • Department of Hydrotechnical Engineering, Faculty Environmental Engineering, Kaunas Forestry and Environmental Engineering University of Applied Sciences, Liepu St. 1, Girionys, LT-53101 Šlienava, Lithuania
Bibliografia
  • 1. Adami, G., Pontalti, M., Cattani, G., Rossini, M., Viapiana, O., Orsolini, G., Benini, C., Bertoldo, E., Fracassi, E., Gatti, D., Fassio, A. 2022. Association between long-term exposure to air pollution and immune-mediated diseases: a population-based cohort study. RMD Open, 8(1). https://doi.org/10.1136/RMDOPEN-2021-002055
  • 2. Al, M., Fei, O., Isaac, Y., Massey, Y. 2019. Exposure routes and health effects of heavy metals on children. Biometals, 32, 563–573. https://doi.org/10.1007/s10534-019-00193-5
  • 3. Appenroth, K.J. 2015. Definition of “Heavy Metals” and Their Role in Biological Systems. World Journal of Microbiology and Biotechnology, 19, 19–29. https://doi.org/10.1007/978-3-642-02436-8_2/TABLES/1
  • 4. ATSDR. 2023. Minimal Risk Levels for Hazardous Substances. Agency for Toxic Substances and Disease Registry. https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx
  • 5. Badyda, A.J., Widziewicz, K., Rogula-Kozłowska, W., Majewski, G., Jureczko, I. 2018. Inhalation exposure to PM-bound polycyclic aromatic hydrocarbons released from barbecue grills powered by gas, lump charcoal, and charcoal briquettes. Advances in Experimental Medicine and Biology, 1023, 11–27. https://doi.org/10.1007/5584_2017_51/FIGURES/4
  • 6. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., Sadeghi, M. 2021. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/FPHAR.2021.643972/BIBTEX
  • 7. Bieńkowska, M., Błaszczak, E., Czyżkowska, A., Kaźmierczak, E., Kotowoda, J., Kwiecień, T., Pasterkowska, A., Podolska, J., Sońta, I., Suchecka, M. 2023. Statistical review of Warsaw.
  • 8. Buxton, S., Garman, E., Heim, K. E., Lyons-Darden, T., Schlekat, C.E., Taylor, M.D., Oller, A.R. 2019. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, Vol. 7, Page 89, 7(7), 89. https://doi.org/10.3390/INORGANICS7070089
  • 9. Caganic, D., Forstorp, M., Makuch, P., Wretlind, P., Benz, S. 2015. Energizing Zabrze. Expanding Horizons: Five Cases Advancing Sustainable Solufions, 52, 52–61. https://core.ac.uk/download/pdf/289938687.pdf#page=54
  • 10. Caggiano, R., Sabia, S., Speranza, A. 2019. Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM1). Environmental Science and Pollution Research, 26(36), 36423–36433. https://doi.org/10.1007/S11356-019-06756-W/TABLES/5
  • 11. California Environmental Protection Agency. 2009. Technical Support Document for Cancer Potency Factors. https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009
  • 12. Ciarkowska, K., Gambus, F., Antonkiewicz, J., Koliopoulos, T. 2019. Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland. Chemosphere, 229, 214–226. https://doi.org/10.1016/J.CHEMOSPHERE.2019.04.209
  • 13. de Oliveira Alves, N., Martins Pereira, G., Di Domenico, M., Costanzo, G., Benevenuto, S., de Oliveira Fonoff, A.M., de Souza Xavier Costa, N., Ribeiro Júnior, G., Satoru Kajitani, G., Cestari Moreno, N., Fotoran, W., Iannicelli Torres, J., de Andrade, J.B., Matera Veras, M., Artaxo, P., Menck, C.F.M., de Castro Vasconcellos, P., Saldiva, P. 2020. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environment International, 145, 106150. https://doi.org/10.1016/J.ENVINT.2020.106150
  • 14. Engwa, G.A., Ferdinand, P.U., Nwalo, F.N., Unachukwu, M.N., Engwa, G.A., Ferdinand, P.U., Nwalo, F.N., Unachukwu, M.N. 2019. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. Poisoning in the Modern World - New Tricks for an Old Dog? https://doi.org/10.5772/INTECHOPEN.82511
  • 15. European Parliament, C. of the E.U. 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050
  • 16. Eurostat. 2023. Population change – Demographic balance and crude rates at national level. https://ec.europa.eu/eurostat/databrowser/view/DEMO_GIND__custom_5468764/book-mark/table?lang=en&bookmarkId=47b3db3a-b5e7-4a7b-a4ee-d61e2d1d259b
  • 17. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., Catalano, A. 2020. Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 679, 17(3), 679. https://doi.org/10.3390/IJERPH17030679
  • 18. Góralczyk, M., Panasiuk, E., Przybyła, M. 2018. Śląskie Voivodship Statistically - history and present.
  • 19. Hoffman, S., Filak, M., Jasiński, R. 2022. Air Quality Modeling with the Use of Regression Neural Networks. International Journal of Environmental Research and Public Health, 19(24). https://doi.org/10.3390/IJERPH192416494
  • 20. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60. https://doi.org/10.2478/INTOX-2014-0009
  • 21. Kadłubek, M., Ingaldi, M., Dziuba, S.T. 2017. Analysis of the air pollutants in industrial city Zabrze. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(41), 351–358. https://doi.org/10.5593/SGEM2017/41/S19.045
  • 22. Kais, K., Gołaś, M., Suchocka, M. 2021. Awareness of Air Pollution and Ecosystem Services Provided by Trees: The Case Study of Warsaw City. Sustainability 2021, Vol. 13, Page 10611, 13(19), 10611. https://doi.org/10.3390/SU131910611
  • 23. Kim, H.S., Kim, Y.J., Seo, Y.R. 2015. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. Journal of Cancer Prevention, 20(4), 232. https://doi.org/10.15430/JCP.2015.20.4.232
  • 24. Klejnowski, K., Rogula-Kozłowska, W., Krasa, A. 2009. Structure of atmospheric aerosol in Upper Silesia (Poland) - contribution of PM2.5 to PM10 in Zabrze, Katowice and Częstochowa in 2005-2007. Archives of Environmental Protection, 35(2), 3–13. https://www.infona.pl//resource/bwmeta1.element.baztech-article-BUS5-0017-0013
  • 25. Krawczyk, D. 2020. Strategic goals for postindustrial cities based on the example of the Zabrze city development strategy. Zeszyty Naukowe. Organizacja i Zarządzanie, Politechnika Śląska, z. 148(148), 325–338. https://doi.org/10.29119/1641-3466.2020.148.24
  • 26. Li, H., Dai, Q., Yang, M., Li, F., Liu, X., Zhou, M., Qian, X. 2020. Heavy metals in submicronic particulate matter (PM1) from a Chinese metropolitan city predicted by machine learning models. Chemosphere, 261, 127571. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127571
  • 27. Li, T., Yu, Y., Sun, Z., Duan, J. 2022. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Particle and Fibre Toxicology 2022 19:1, 19(1), 1–25. https://doi.org/10.1186/S12989-022-00507-5
  • 28. Mainka, A. 2021. Children health risk assessment of metals in total suspended particulate matter (Tsp) and pm1 in kindergartens during winter and spring seasons. Atmosphere, 12(9). https://doi.org/10.3390/ATMOS12091096
  • 29. Mainka, A., Zajusz-Zubek, E. 2019. PM1 in Ambient and Indoor Air – Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere 2019, Vol. 10, Page 662, 10(11), 662. https://doi.org/10.3390/ATMOS10110662
  • 30. Majewski, G., Rogula-Kozłowska, W., Rozbicka, K., Rogula-Kopiec, P., Mathews, B., Brandyk, A. 2018. Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland). Aerosol and Air Quality Research, 18(3), 636–654. https://doi.org/10.4209/AAQR.2017.06.0221
  • 31. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. 2020. Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8, 505570. https://doi.org/10.3389/FPUBH.2020.00014/BIBTEX
  • 32. Michalski, R., Pecyna-Utylska, P. 2022. Chemical characterization of bulk depositions in two cities of Upper Silesia (Zabrze, Bytom), Poland : Case study. Archives of Environmental Protection, 48(2). https://doi.org/10.24425/AEP.2022.140784
  • 33. Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A.M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., Simal-Gandara, J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/J.JKSUS.2022.101865
  • 34. Nazar, W., Niedoszytko, M., Nazar, W., Niedoszytko, M. 2022. Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. IJERPH, 19(2), 1–0. https://econpapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:2:p:895-:d:724510
  • 35. OECD. 2023. Metropolitan areas. OECD Regional Statistics (Database). https://doi.org/https://doi.org/10.1787/data-00531-en
  • 36. Onat, B., Çalışkan, N.S., Şahin, Ü.A., Uzun, B. 2020. Assessment of the health risk related to exposure to ultrafine, fine, and total particulates and metals in a metal finishing plant. Environmental Science and Pollution Research, 27(4), 4058–4066. https://doi.org/10.1007/S11356-019-06891-4/TABLES/3
  • 37. Rachwał, M., Wawer, M., Jabłońska, M., Rogula-Kozłowska, W., Rogula-Kopiec, P. 2020. Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk. Minerals 2020, Vol. 10, Page 866, 10(10), 866. https://doi.org/10.3390/MIN10100866
  • 38. Raychaudhuri, S. Sen, Pramanick, P., Talukder, P., Basak, A. 2021. Polyamines, metallothioneins, and phytochelatins – Natural defense of plants to mitigate heavy metals. Studies in Natural Products Chemistry, 69, 227–261. https://doi.org/10.1016/B978-0-12-819487-4.00006-9
  • 39. Samet, J.M., Chiu, W.A., Cogliano, V., Jinot, J., Kriebel, D., Lunn, R.M., Beland, F.A., Bero, L., Browne, P., Fritschi, L., Kanno, J., Lachenmeier, Di. W., Lan, Q., Lasfargues, G., Le Curieux, F., Peters, S., Shubat, P., Sone, H., White, M.C., Wild, C.P. 2020. The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification. JNCI: Journal of the National Cancer Institute, 112(1), 30–37. https://doi.org/10.1093/JNCI/DJZ169
  • 40. Santos, D., Vieira, R., Luzio, A., Félix, L. 2018. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers. Advances in Molecular Toxicology, 12, 151–179. https://doi.org/10.1016/B978-0-444-64199-1.00007-5
  • 41. Simeonova, E., Currie, J., Nilsson, P., Walker, R. 2021. Congestion Pricing, Air Pollution, and Children’s Health. Journal of Human Resources, 56(4), 971–996. https://doi.org/10.3368/JHR.56.4.0218-9363R2
  • 42. Sun, Y., Tian, Y., Xue, Q., Jia, B., Wei, Y., Song, D., Huang, F., Feng, Y. 2021. Source-specific risks of synchronous heavy metals and PAHs in inhalable particles at different pollution levels: Variations and health risks during heavy pollution. Environment International, 146, 106162. https://doi.org/10.1016/J.ENVINT.2020.106162
  • 43. Talbi, A., Kerchich, Y., Kerbachi, R., Boughedaoui, M. 2018. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environmental Pollution (Barking, Essex : 1987), 232, 252–263. https://doi.org/10.1016/J.ENVPOL.2017.09.041
  • 44. Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H.J., Novakova, S., Steiropoulos, P., Kowal, K. 2020. Impact of Air Pollution on Asthma Outcomes. International Journal of Environmental Research and Public Health 2020, 17(17), 6212. https://doi.org/10.3390/IJERPH17176212
  • 45. US EPA. 2008. Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version 2.0 (Final). U.S. Environmental Protection Agency – Air Quality Analysis Division, EP A-454/B. http://www.epa.gov/ttn/amtic/
  • 46. US EPA. 2023a. Particulate Matter (PM) Pollution. U.S. Environmental Protection Agency. https://www.epa.gov/pm-pollution
  • 47. US EPA. 2023b. Regional Screening Levels (RSLs) – Generic Tables. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
  • 48. WHO. 2021. WHO’s global air-quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Lancet, 368(9544), 1302.
  • 49. Widziewicz, K., Rogula-Kozłowska, W., Loska, K. 2016. Cancer risk from arsenic and chromium species bound to PM2.5 and PM1 – Polish case study. Atmospheric Pollution Research, 7(5), 884–894. https://doi.org/10.1016/J.APR.2016.05.002
  • 50. Zajusz-Zubek, E., Radko, T., Mainka, A. 2017. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environmental Monitoring and Assessment, 189(8), 1–19. https://doi.org/10.1007/S10661-017-6117-X/TABLES/4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40c4b15c-28a0-46e5-960d-3387ab63252c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.