PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
Rocznik
Strony
708--725
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Nazare, A. N.; Asthana, S. N.; Singh, H. Glycidyl Azide Polymer (GAP) − an Energetic Component of Advanced Solid Rocket Propellants – a Review. J. Energ. Mater. 1992, 10(1): 43-63.
  • [2] Finck, B.; Graindorge, H. New Molecules for High Energy Materials. 27th Int. Ann. Conf. ICT 1996, 1-23.
  • [3] Reed, Jr. R.; Chan, M. L. Insensitive High Energetic Explosive Formulations. Patent US 5061330, 1991.
  • [4] Dey, A.; Sikder, A. K.; Talawar, M. B.; Chottopadhyay, S. Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants: an Overview. Cent. Eur. J. Energ. Mater. 2015, 12(2): 377-399.
  • [5] Manship, T. D.; Heister, S. D.; O’Neil, P. T. Experimental Investigation of Highburning-rate Composite Solid Propellants. J. Propul. Power 2012, 28(6): 1389-1398.
  • [6] Selim, K.; Özkar, S.; Yilmaz, L. Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP-based Binders for Composite Propellants. J. Appl. Polym. Sci. 2000, 77(3): 538-546.
  • [7] Song, X. Q.; Zhou, J. Y.; Wang, W. H.; Wang, J. W.; Bai, S. H. Research Progress of Glycidyl Azide Polymers Modification. Chin. J. Energ. Mater. 2007, 15(4): 425-430.
  • [8] Haska, S. B.; Bayramli, E.; Pekel, F.; Oezkar, S. Mechanical Properties of HTPBIPDI Based Elastomers. J. Appl. Polym. Sci. 1997, 64(12): 2347-2354.
  • [9] Mao, K. Z.; Ma, S.; Luo, Y. J. Crosslinking Network Structure Integrity of PET/N-100 Binder System. Chin. J. Energ. Mater. 2015, 23(10): 941-946.
  • [10] Caro, R. I.; Bellerby, J. M. Characterization and Comparison of Two Hydroxylterminated Polyether Prepolymers. Int. J. Energ. Mater. Chem. Propul. 2010, 9(4): 351-364.
  • [11] Sitzmann, M. E.; Adolph, H. G. Hydrolyzable Polymers for Explosive and Propellant Binders. Patent US 6 395 112B1, 2002.
  • [12] Zhao, Y.; Zhang, X. H.; Zhang, W.; Fan, X. Z.; Xie, W. X.; Xu, H. J.; Du, J. J. Factors Affecting the Mechanical Properties of GAP Binders Films. Chin. J. Explos. Propell. 2016, 39(1): 79-83.
  • [13] Deng, J. K.; Li, G. P.; Luo, Y. J. Studies on Cross-linking Network Structure of GAP Binder System. Acta Polym. Sin. 2016, (4): 464-470.
  • [14] Pang, A. M.; Zhang, R. W.; Wu, J. H. A Preliminary Investigation on the Mechanical Properties of GAP-based Propellants. J. Solid. Rocket. Technol. 1995, 18(2): 31-34.
  • [15] Wang, X. P. Modification of GAP Propellant Binder. Graduate School of Beijing Institute of Technology, Beijing 2009, pp. 41-46.
  • [16] Chen, C. Y.; Wang, X. F.; Gao, L. L.; Ni, B. Effects of NCO/OH Molar Ratio on the Cure Reaction and Mechanical Property of HTPB. Chem. Res. Appl. 2013, 25(10): 1381-1385.
  • [17] Taya, M.; Daimaru, A. Macroscopic Fracture Surface Energy of Unidirectional Metal Matrix Composites: Experiment and Theory. J. Mater. Sci. 1983, 18(10): 3105-3116.
  • [18] Garbarczyk, M.; Grinberg, F.; Nestle, N.; Kuhn, W. A Novel Approach to the Determination of the Crosslink Density in Rubber Materials with the Dipolar Correlation Effect in Low Magnetic Fields. J. Polym. Sci. Pol. Phys. 2001, 39(18): 2207-2216.
  • [19] Voda, A. E.; Haberstroh, U. D. I. E. Low Field NMR for Analysis of Rubbery Polymers. Fakultät für Mathematik, Informatik und Naturwissenschaften, Report No. RWTH-CONV-122474, 2006.
  • [20] Zhao, F.; Zhang, P.; Zhao, S. G.; Yu, J.; Kuhn, W. Characterization of Elastomer Networks by NMR Parameters. Part Ⅲ1 − Influence of Activators on the Network Dynamics of NR Vulcanizates. Kgk Rubberpoint 2008, 05: 224-229.
  • [21] Kuhn, W.; Theis, I.; Koeller, E. Network Dynamics of Crosslinked Polymers − Crosslinking, Filler and Aging Characterized by NMR Parameters. Mater. Res. Soc. Symp. Proc. 1991, 33(1): 217-223.
  • [22] Yilgor, I.; Yilgor, E.; Guler, I. G.; Ward, T. C.; Wilkes, G. L. FTIR Investigation of the Influence of Diisocyanate Symmetry on the Morphology Development in Model Segmented Polyurethanes. Polymer 2006, 47(11): 4105-4114.
  • [23] Mingshi, S. Study on the Relationships between the Structure of Networks and Mechanical Properties of Rubber Vulcanizates. Polym. Bull. 1987, 17(1): 55-62.
  • [24] Fried, E. An Elementary Molecular-Statistical Basis for the Mooney and Rivlin-Saunders Theories of Rubber Elasticity. J. Mech. Phys. Solids 2002, 50(3): 571-582.
  • [25] Song, M. S.; Zhang, H. Z. Study on the Relationships between the Structure of Networks and Mechanical Properties of Rubber Vulcanizates with Carbon Black Filters -Ⅲ. The Phenomenological Theory of Elasticity for Rubber Vulcanizates at Lager Deformation. Polym. Mater. Sci. Eng. 1986, 5: 21-32.
  • [26] Queslel, J. P.; Mark, J. E. Molecular Interpretation of the Moduli of Elastomeric Polymer Networks of Known Structure. In: Analysis/Networks/Peptides, Springer, Berlin/Heidelberg 1984, pp. 135-176; ISBN: 978-3-540-39029-9.
  • [27] Song, M. Study on the Relationship between the Structures of Networks and Mechanical Properties of Polymer Networks − Comparison between the Theory of Elasticity for Crosslink-entanglement Networks and Experiments. Journal of the University of Science and Technology of China 1986, 16(2): 162-174.
  • [28] Kramer, O. Contribution of Entanglements to Rubber Elasticity. Polymer 1979, 20(11): 1336-1342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40ba4b00-d3f5-473a-bb7c-c93c9bb773d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.