PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of innovative three-element binder on permanent deformations in recycled mixtures with emulsion and foamed bitumen

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is detected to the assessment of durable deformations of recycled mixtures made of foamed bitumen (MCAS) and emulsion (MCE). In the basic part of research and analyses, attention was focused on determining the scale of three-component composition modifying rheological phenomena of recycled mixtures and other selected features considering various methods of bituminous binder proportioning. Cement, hydrated lime, and dusts from cement dust extracting system were included in the composition hydraulic binder. In this paper, the effect of graining of recycled mixture was also taken into account. One of the main scientific aims of the paper was to evaluate the degree of changes in durable deformations described in the power model depending on proportions of elements making three-element hydraulic binder. In effect, it was pointed out that the influence of hydraulic binder differently affected the durable deformation of recycled mixture depending on ways of bitumen binder implementation. There-element binder exerted the highest influence on mechanical properties of mixtures with fine-grained mixtures made according to the MCAS technology. The presence of 4 groups of mixtures with different properties was demonstrated using the classification neuron net. Based on that information, a set of the most recommended solutions from the point of view of time deformation resistance, low sensitiveness to the load level at moderate stiffness was selected. The best representative among them was the arrangement with 20% of hydrated lime, less than 40% of CBPD dusts and 40 ÷ 60% of cement.
Rocznik
Strony
236--261
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
  • Department of Transportation Engineering, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Department of Transportation Engineering, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Department of Transportation Engineering, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Pavement Technology Division, The Road and Bridge Research Institute, Instytutowa 1, 03-302 Warsaw, Poland
Bibliografia
  • [1] C. Leek, G. Jameson, Austroads, Review of foamed bitumen stabilisation mix design methods, Austroads, Sydney, NSW, 2011. https:// www. onlin epubl icati ons. austr oads. com. au/ items/ AP- T178-11 (accessed July 20, 2018).
  • [2] Chomicz-Kowalska A, Maciejewski K. Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. J Clean Prod. 2020;258:120517. https:// doi. org/ 10. 1016/j. jclep ro. 2020. 120517.
  • [3] Mazurek G, Iwański M. Multidimensional analysis of the effects of waste materials on physical and mechanical properties of recycled mixtures with foamed bitumen. Appl Sci. 2018;8:282. https://doi. org/ 10. 3390/ app80 20282.
  • [4] Jamshidi A, White G. Evaluation of performance and challenges of use of waste materials in pavement construction: a critical review. Appl Sci. 2019;10:226. https:// doi. org/ 10. 3390/ app10 010226.
  • [5] Gonzalez Andres A. An experimental study of the deformational and performance characteristics of foamed bitumen stabilised pavements, University of Canterbury. Civil and Natural Resources Engineering.2009. http:// hdl. handle. net/ 10092/ 3285. Accessed 23 Mar 2020.
  • [6] Ramanujam JM, Jones JD. Characterization of foamed-bitumen stabilisation. Int J Pavement Eng. 2007;8:111–22. https:// doi. org/10. 1080/ 10298 43060 11496 76.
  • [7] Mazurek G, Pszczoła M, Szydłowski C. Non-linear mastic characteristics based on the modified mscr (multiple stress creep recovery) test. Structure and Environment. 2019;11:23–34. https:// doi. org/ 10. 30540/ sae- 2019- 002.
  • [8] Wirtgen Group. Cold recycling technology, pierwsze. Windhagen: Wirtgen GmbH; 2012.
  • [9] Iwański M, Buczyński P, Mazurek G. Optimization of the road binder used in the base layer in the road construction. Constr Build Mater. 2016;125:1044–54. https:// doi. org/ 10. 1016/j. conbu ildmat. 2016. 08. 112.
  • [10] Kukiełka J, Bańkowski W. The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Constr Build Mater. 2019;226:759–66. https:// doi. org/ 10. 1016/j. conbuildmat. 2019. 07. 276.
  • [11] Xiao F, Yao S, Wang J, Li X, Amirkhanian S. A literature review on cold recycling technology of asphalt pavement. Constr Build Mater. 2018;180:579–604. https:// doi. org/ 10. 1016/j. conbu ildmat. 2018. 06. 006.
  • [12] Wen H, Tharaniyil MP, Ramme B. Investigation of performance of asphalt pavement with fly-ash stabilized cold in-placerecycled base course. Transport Res Rec J Transport Res Board. 1819;2003:27–31. https:// doi. org/ 10. 3141/ 1819b- 04.
  • [13] Betti G, Cocurullo A, Marradi A, Tebaldi G, Airey G, Jenkins K. Effect of lime on short-term bearing capacity of bitumen emulsion recycled mixtures. Asphalt Pavements CRC Press. 2014. https:// doi. org/ 10. 1201/ b17219- 128.
  • [14] EN 1426, Bitumen and bituminous binders- determination of needle penetration. Brussels; 2015.
  • [15] EN 1427, Bitumen and bituminous binders- determination of the softening point: ring and Ball method. Brussels; 2015.
  • [16] EN 12593, Bitumen and bituminous binders- determination of the Fraass breaking point. Brussels. 2015.
  • [17] EN 14771, Bitumen and bituminous binders- determination of the flexural creep stiffness: bending beam rheometer (BBR), Brussels; 2012.
  • [18] EN 14023, Bitumen and bituminous binders. Specification framework for polymer modified bitumens. Brussels; 2010.
  • [19] ASTM D4402, Standard Test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken; 2020.
  • [20] EN 13398, Bitumen and bituminous binders. Determination of the elastic recovery of modified bitumen. Brussels. 2017.
  • [21] Mazurek G, Iwański M. Applying of 2S2P1D model for assessing visco-elastic properties of bituminous binder extracted from SMA mixture with hydrated lime addition. Cement Wapno Beton. 2018;23:124.
  • [22] N.I. Yusoff, Modelling the linear visco-elastic rheological properties of bituminous binders, University of Nottingham, 2012. http:// eprin ts. notti ngham. ac. uk/ 12582/1/ Nur_ Izzi_ Md._ Yusoff. pdf. Accessed 23 Mar 2020.
  • [23] Iwański M, Chomicz-Kowalska A, Maciejewski K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr Build Mater. 2015;83:62–9. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 02. 060.
  • [24] Wirtgen Group. Podręcznik recyklingu na zimno, drugie. Wind-hagen: Wirtgen GmbH; 2006.
  • [25] Technical Guideline TG2. Bitumen stabilised materials. A guide-line for the design and construction of bitumen emulsion and foamed bitumen stabilised materials, 2nd ed., Pretoria, South Africa; 2009.
  • [26] Iwański M, Mazurek G, Buczyński P. Bitumen foaming optimisation process on the basis of rheological properties. Materials. 2018;11:1854. https:// doi. org/ 10. 3390/ ma111 01854.
  • [27] EN 13808, Bitumen and bituminous binders: framework for specifying cationic bituminous emulsions. Brussels; 2013.
  • [28] Montgomery DC. Design and analysis of experiments. 8th ed. Hoboken, NJ: John Wiley and Sons Inc; 2013.
  • [29] Ž.R. Lazić (2004). Design of experiments in chemical engineering: a practical guide, Wiley-VCH, Weinheim [Germany].
  • [30] Czapik P, Zapała-Sławeta J, Owsiak Z, Stępień P. Hydration of cement by-pass dust. Constr Build Mater. 2020;231:117139. https:// doi. org/ 10. 1016/j. conbu ildmat. 2019. 117139.
  • [31] Judycki J, Jaskuła P, Pszczoła M, Alenowicz J, Dołżycki B, Jaczewski M, Ryś D, Stienss M, Katalog Typowych Konstrukcji Nawierzchni Podatnych iPółsztywnych (Catalogue of typical flexible and semi-rigid pavements) (in polish). GDDKiA. Warsaw; (2014).
  • [32] EN 12697-25, (2016). Bituminous mixtures: test methods: part 25: cyclic compression test. Brussels; 2016.
  • [33] EN 13108-1, Bituminous mixtures: material specifications: part 20: type testing. Brussels; 2016.
  • [34] Dołżycki B. Polish experience with cold in-place recycling. IOP Conf Ser Mater Sci Eng. 2017;236:012089. https:// doi. org/ 10. 1088/ 1757- 899X/ 236/1/ 012089.
  • [35] Judycki J, Jaskuła P, Pszczoła M, Ryś D, Jaczewski M, Alenowicz J, Dołżycki B, Stienss M. New polish catalogue of typical flexible and semi-rigid pavements. MATEC Web Conf. 2017;122:04002. https:// doi. org/ 10. 1051/ matec conf/ 20171 22040 02.
  • [36] EN 12697-22, Bituminous mixtures - Test methods - Part 22: Wheel tracking. Brussels; 2005.
  • [37] EN 12697-8, Bituminous mixtures. Test methods. Determination of void characteristics of bituminous specimens. Brussels; 2018.
  • [38] EN 12697-23, Bituminous mixtures. Test methods. Determination of the indirect tensile strength of bituminous specimens. Brussels; 2017.
  • [39] 12697-26 D, Bituminous mixtures: test methods: part 26: Stiffness. Brussels; 2016.
  • [40] Airey GD, Rahimzadeh B, Collop AC. Linear rheological behavior of bituminous paving materials. J Mater Civ Eng. 2004;16:212–20. https:// doi. org/ 10. 1061/ (ASCE) 0899- 1561(2004) 16: 3(212).
  • [41] Kim YR, editor. Modeling of asphalt concrete, ASCE Press; McGraw-Hill, Reston. New York: VA; 2009.
  • [42] Woldekidan MF. Response modelling of bitumen. Bituminous Mastic and Mortar: Technische Universiteit Delft; 2011.
  • [43] Brinson HF, Brinson LC. Polymer engineering science and viscoelasticity: an introduction. New York: Springer; 2008.
  • [44] Gao D, Wang P, Li M, Luo W. Modelling of nonlinear viscoelastic creep behaviour of hot-mix asphalt. Constr Build Mater. 2015;95:329–36. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 07. 112.
  • [45] Leonardi G. Finite element analysis for airfield asphalt pavements rutting prediction. Bull Polish Acad Sci Tech Sci. 2015;63:397–403. https:// doi. org/ 10. 1515/ bpasts- 2015- 0045.
  • [46] W. Huang, X. Zhang, H. Rong, B. Chen (2015) finite-element method for predicting rutting depth of steel deck asphalt pavement based on accelerated pavement test, in: proceedings of the 3rd international conference on mechanical engineering and intelligent systems (ICMEIS 2015), Atlantis Press, Yinchuan, China https:// doi. org/ 10. 2991/ icmeis- 15. 2015. 177.
  • [47] S.P.C. Marques, G.J. Creus (2012) Computational visco-elasticity, Springer, Heidelberg ; New York.
  • [48] Kraus H. Creep analysis. New York: Wiley; 1980.
  • [49] Findley WN, Lai JS, Onaran K. Creep and relaxation of nonlinear visco-elastic materials: with an introduction to linear viscoelasticity. New York: Dover; 1989.
  • [50] Manda K, Wallace RJ, Xie S, Levrero-Florencio F, Pankaj P. Nonlinear visco-elastic characterization of bovine trabecular bone. Biomech Model Mechanobiol. 2017;16:173–89. https:// doi. org/ 10. 1007/ s10237- 016- 0809-y.
  • [51] Pszczola M, Jaczewski M, Szydlowski C. Assessment of thermal stresses in asphalt mixtures at low temperatures using the tensile creep test and the bending beam creep test. Appl Sci. 2019;9:846. https:// doi. org/ 10. 3390/ app90 50846.
  • [52] Bonaquist RF. Refining the simple performance tester for use in routine practice. Washington, D.C.: Transportation Research Board; 2008.
  • [53] T. Kohonen, T.S. Huang, M.R. Schroeder, Self-Organizing Maps., Springer Berlin / Heidelberg, Berlin, Heidelberg, 2012. https:// public. ebook centr al. proqu est. com/ choice/ publi cfull record. aspx?p= 55776 67 (accessed May 14, 2020).
  • [54] Cottrell M, Fort JC, Pagès G. Theoretical aspects of the SOM algorithm. Neurocomputing. 1998;21:119–38. https:// doi. org/ 10. 1016/ S0925- 2312(98) 00034-4.
  • [55] Arabani M, Jamshidi R, Sadeghnejad M. Using of 2D finite-element modeling to predict the glasphalt mixture rutting behavior. Constr Build Mater. 2014;68:183–91. https:// doi. org/ 10. 1016/j. conbu ildmat. 2014. 06. 057.
  • [56] Wesołowski M, Blacha K, Pietruszewski P, Iwanowski P. Analysis of the actual contact surface of selected aircraft tires with the airport pavement as a function of pressure and vertical load. Coatings. 2020;10:591. https:// doi. org/ 10. 3390/ coati ngs10 060591.
  • [57] Saboo N, Kumar P. A study on creep and recovery behavior of asphalt binders. Constr Build Mater. 2015;96:632–40. https:// doi. org/ 10. 1016/j. conbu ildmat. 2015. 08. 078.
  • [58] H. Benker, Practical Use of Mathcad®: Solving Mathematical Problems with a Computer Algebra System, Springer London : Imprint : Springer, London, 1999. http://dx.doi.org/https:// doi. org/ 10. 1007/ 978-1- 4471- 0539-8 (accessed June 18, 2018).
  • [59] Huang H, Analysis of accelerated pavement tests and finite element modeling of rutting phenomenon, Purdue University, 1995. https:// docs. lib. purdue. edu/ disse rtati ons/ AAI96 01511/. Accessed 23 Mar 2020.
  • [60] Fang H, Haddock JE, White TD, Hand AJ. On the characterization of flexible pavement rutting using creep model-based finite-element analysis. Finite Elem Anal Des. 2004;41:49–73. https:// doi. org/ 10. 1016/j. finel. 2004. 03. 002.
  • [61] A.S. Al-Suhaibani, E.T. Tons (1991). Properties of fly ash-extended asphalt concrete mixes. Transp Res Rec 123–133.
  • [62] P. Buczynski, M. Iwanski (1991) The influence of hydrated lime, portland cement and cement dust on rheological properties of recycled cold mixes with foamed bitumen, in: proccedings of 10th international conference “environmental engineering,” VGTU Technika, Vilnius Gediminas Technical University, Lithuania, https:// doi. org/ 10. 3846/ enviro. 2017. 135.
  • [63] M.N. Partl (2013) RILEM Technical Committee 206-ATB, International Union of Testing and Research Laboratories for Materials and Structures, eds., Advances in interlaboratory testing and evaluation of bituminous materials: State-of-the-art report of the RILEM Technical Committee 206-ATB, Springer, Dordrecht ; New York.
  • [64] Hua J. Finite element modeling and analysis of accelerated pavement testing devices and phenomenon, Purdue University, 2000. https:// docs. lib. purdue. edu/ disse rtati ons/ AAI30 20244/. Accessed 23 Mar 2020.
  • [65] Witczak MW, editor. Simple performance test for Superpave mix design. Washington, D.C.: National Academy Press; 2002.
  • [66] Box GEP, Cox DR. An analysis of transformations, J R Stat Soc B (Methodological). 2004;26(2); 211–52.
  • [67] Giudici P. Applied data mining: statistical methods for business and industry. New York: J. Wiley; 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40b61aca-94f7-4c3e-9516-423a37b26bf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.