PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of injection parameters on tensile and flexural properties of green composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural fibres are used to develop green composites due to their environmentally friendly nature, ease of availability, low cost, higher strength, as well as good thermal, acoustic, and insulating properties. In this study, jute fibre (JF) and sisal fibre (SF) were considered as reinforcement and a biodegradable polymer, namely polylactic acid (PLA), was selected to fabricate the composites by the injection moulding process. The fibres were chemically treated with sodium hydroxide (NaOH) at a concentration of 2% to improve the characteristics of the fibre. The effect of the injection moulding parameters like injection pressure (bars), injection speed (mm/s), and melting temperature (°C) on the tensile and flexural properties of the sisal fibre/polylactic acid (SF/PLA) and jute fibre/polylactic acid (JF/PLA) composites were investigated. Taguchi’s L9 orthogonal array was chosen for the design of experiments, and analysis of variance (ANOVA) was performed to find the significance and contribution of the selected parameters. The optimum levels from the main plots of both the tensile and flexural strength of the JF/PLA composite were found to be the injection pressure of 90 bars, injection speed of 60 mm/s, and injection temperature of 165°C. Meanwhile, the optimum level of tensile strength for SF/PLA-based composite was recorded as the injection pressure of 70 bars, injection speed of 40 mm/s, and temperature of 165°C. For the flexural strength, the optimum level was determined as the injection pressure of 90 bars, injection speed of 60 mm/s, and temperature of 165°C.
Rocznik
Strony
196--204
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • North Eastern Regional Institute of Science and Technology, Department of Mechanical Engineering, Itanagar-791109, India
  • North Eastern Regional Institute of Science and Technology, Department of Mechanical Engineering, Itanagar-791109, India
autor
  • North Eastern Regional Institute of Science and Technology, Department of Mechanical Engineering, Itanagar-791109, India
  • National Institute of Technology Meghalaya, Department of Mechanical Engineering, Shillong-793003, India
  • North Eastern Regional Institute of Science and Technology, Department of Mechanical Engineering, Itanagar-791109, India
  • National Institute of Technology Meghalaya, Department of Mechanical Engineering, Shillong-793003, India
Bibliografia
  • [1] Gholampour A., Ozbakkaloglu T., A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, J. Mater. Sci. 2020, 55, 829-892, DOI: 10.1007/s10853-019-03990-y.
  • [2] Young W.B., Tian B.Y., Tsau Y.C., Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering, Springer, New Delhi 2014, DOI: 10.1007/978-81-322-1871-5.
  • [3] Morales A.P., Guemes A., Lopez A.F., et al., Bamboo-polylactic acid (PLA) composite material for structural applications, Materials 2017, 10, 1286- 1296, DOI: 10.3390/ma10111286.
  • [4] Ma H., Joo C.W., Structure and mechanical properties of jute-polylactic acid biodegradable composites, J. Compos. Mater. 2011, 45, 1451-1460, DOI: 0.1177/0021998310382316.
  • [5] Arao Y., Fujiura T., Itani S. et al., Strength improvement in injection-molded jute-fiber-reiforced polylactide green-composites, Composites, Part B. 2015, 68, 200-206, DOI: 10.1016/j.compositesb.2014.08.032.
  • [6] Samouh Z., Molnar K., Boussu F., et al., Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites, Poly. Adv. Technol. 2019, 30(3), 529-537, DOI: 10.1002/pat.4488.
  • [7] Kassegn E., Desplentere F., Berhanu T., Mechanical properties of short sisal fiber reinforced polylactic acid (PLA) biocomposite processed by injection molding, J. Eng. Technol. 2019, 1(1), 20-36.
  • [8] Md Radzi M.K.F., Muhamad N., Sulong A.B. et al., Optimization of injection molding parameters: improving mechanical properties of kenaf reinforced polypropylene composites, J. Adv. Manufac. Technol. 2018, 12(2), 107-120.
  • [9] Wang J., Mao Q., Jiang N., Effect of injection molding parameters on properties of insert-injection molded polypropylene single-polymer composites, Polymers 2021, 14(1), 23, DOI: 10.3390/polym14010023.
  • [10] Sasimowski E., Majewski Ł., Grochowicz M., Analysis of selected properties of injection moulded sustainable biocomposites from poly (butylene succinate) and wheat bran, Materials 2021, 14(22), 7049, DOI: 10.3390/ma14227049.
  • [11] Cao Y., Goda K., Shibata S., Development and mechanical properties of bagasse fiber einforced composites, Adv. Compos. Mater. 2007, 16(4), 283-298.
  • [12] Mohamed T.A., El-Gamsy R., El-Wahab A.A.A., Enhanchancing the mechanical properties of HDPE reinforced with flax fibers composites during injection molding process using numerical optimization, J. Manage. Eng. Integ. 2018, 11(2), 55-65.
  • [13] Hussain S.A., Pandurangadu V., Kumar K.P., Optimization of mechanical properties of green coconut fiber/HDPE composites, Inter. J. Adv. Sci. Technol. 2016, 92(1), 1-8.
  • [14] Frącz W., Janowski G., Bąk Ł., Influence of the alkali treatment of flax and hemp fibers on the properties of PHBV based biocomposites, Polymers 2021, 13(12), 1965, DOI: 10.3390/polym13121965.
  • [15] Balaji A., Karthikeyan B., Swaminathan J. et al., Effect of filler content of chemically treated short bagasse fiber- reinforced cardanol polymer composites, J. Nat. Fibers. 2019, 16(4), 1-15, DOI: 10.1080/15440478.2018.1431829.
  • [16] Manjula R., Raju N.V., Chakradhar R.P.S. et al., Effect of thermal aging and chemical treatment on tensile properties of coir fiber, J. Nat. Fibers. 2018, 15(1), 112-121.
  • [17] Campos A.R., Cunha A.M., Tielas A. et al., Biodegradable composites applied to the automotive industry: the development of a loudspeaker front, Mater. Sci. Forum 2008, 587-588, 187-191.
  • [18] Bekele A.E., Lemu H.G., Jiru M.G., Experimental study of physical, chemical and mechanical properties of enset and sisal fibers, Polym. Test. 2022, 106, 107453.
  • [19] Ouarhim W., Zari N., Bouhfid R. et al., Mechanical performance of natural fibers-based thermosetting composites, In: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing. Sawston (United Kingdom) 2019, 43-60.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40b5767b-f2e8-4af3-b0a5-a4547323bca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.