PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generator with modulated magnetic flux for wind turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the concept of a permanent magnet synchronous generator (PMSG) with uniquely designed stator windings for wind turbines is presented. Two 3-phase windings in the stator are used, one of which is connected in the star, while the other in the delta configuration. Six-pulse rectifiers, mutually coupled by the pulse transformer, whose primary winding is supplied by the so-called “current modulator”, are placed at the outputs of both windings. The modulator output current should meet all the necessary and strict requirements. Both rectifiers operate on a common DC circuit. These solutions provide the sinusoidal magnetomotive force in the stator of the PMSG and the quasi-sinusoidal (taking into account the non-linearity of the magnetic circuit) magnetic flux. In light of the generator principle, it has been called the “PMSG with modulated the magnetic flux”. The slightly higher complexity in the structure of the generator, as compared to the normal three-phase construction, is compensated by the exceptional simplicity of the power electronics section of the system, which allows high efficiency to be reached. The current modulator (as well as the pulse transformer) is a power electronics converter with a relatively low output power as compared to the overall output power of the system. In comparison to other known solutions, the expected cost of the system should be lower. It is also expected that a high degree of reliability in terms of its operation will be achieved, and consequently, that the the ongoing costs of its maintenance will be reduced. In the paper, concept, theoretical basis of operation, and results of the studies of the simulation models of the generator, including the basic power electronics section, are presented.
Rocznik
Strony
469--478
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., tab.
Twórcy
autor
  • Institute of Electrical Engineering and Electronics, Poznań University of Technology, 3A Piotrowo St., 60-965 Poznań, Poland
  • Institute of Electrical Engineering and Electronics, Poznań University of Technology, 3A Piotrowo St., 60-965 Poznań, Poland
  • Institute of Electrical Engineering and Electronics, Poznań University of Technology, 3A Piotrowo St., 60-965 Poznań, Poland
  • Institute of Electrical Engineering and Electronics, Poznań University of Technology, 3A Piotrowo St., 60-965 Poznań, Poland
autor
  • Institute of Electrical Engineering and Electronics, Poznań University of Technology, 3A Piotrowo St., 60-965 Poznań, Poland
Bibliografia
  • [1] Global Wind Energy Council, http://www.gwec.net/publications/global-wind-report-2.
  • [2] L.H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, S. Munk-Nielsen, H. Binder, P. Sorensen, and B. Bak-Jensen, Conceptual Survey of Generators and Power Electronics for Wind Turbines, Riso National Laboratory, Roskilde, 2001.
  • [3] J. Soens, Impact of Wind Energy in a Future Power Grid, Ph.D. Dissertation, Department of Electrical Engineering (ESAT), KULeuven, Belgium, 2005.
  • [4] H. Polinder, D.J. Bang, H. Li, and Z. Chen, Concept Report on Generator Topologies, Mechanical and Electromagnetic Optimization, Deliverable No.: D 1B2.b.1, 2007.
  • [5] P.W. Carlin, A.S. Laxson, and E.B. Muljadi, The History and State of the Art of Variable-Speed Wind Turbine Technology, Technical report NREL/TP-500‒2867, National Renewal Energy Laboratory, Golden, CO, USA, 2001.
  • [6] Z. Chen, “Issues of connecting wind farms into power systems”, Proceedings of Transission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, (2005).
  • [7] V. Akhmatov, Induction Generators for Wind Power, Multi-Science, Brentwood, 2007.
  • [8] D.S. Henderson, “Synchronous or induction generators? – the choice for small scale generation”, International Conference on Opportunities and Advances in International Electric Power Generation, 146–149 (1996).
  • [9] H. Muller, M. Poller, A. Basteck, M. Tilscher, and J. Pfister, “Grid compatibility of variable speed wind turbines with directly coupled synchronous generator and hydro-dynamically controlled gearbox”, 6th International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, (2006).
  • [10] M.T. Ameli, S. Moslehpour, and A. Mirzaie, “Feasibility study for replacing asynchronous generators with synchronous generators in wind farm power stations”, Proc. 2008 IAJC-IJME International Conference, Paper 129 (2008).
  • [11] N. Goudarzi, Aerodynamic and Electromagnetic Modeling and Analysis of a Variable Torque Generator for Wind Turbine Applications, MA Thesis, Department of Mechanical Engineering, University of Maryland, Baltimore, MD, USA, 2011.
  • [12] F. Wang, J. Bai, Q. Hou, and J. Pan, “Design features of low speed permanent magnet generator direct driven by wind turbine”, Proc. 8th International Conference on Electrical Machines and Systems, ICEMS 2005 2, (2005).
  • [13] G. Bywaters, V. John, J. Lynch, P. Mattila, G. Nortor, J. Stowell, M. Salata, O. Labath, A. Chertok, and D. Hablanian, Northern Power Systems Windpact Drive Train Alternative Design Study Report, Subcontractor report NREL/SR-500‒35524, National Renewable Energy Laboratory, Golden, CO, USA, 2004.
  • [14] A. Grauers, Design of Direct-Driven Permanent-Magnet Generators for Wind Turbines, Ph.D. Dissertation, Chalmers University of Technology, Göteborg, Sweden, 1996.
  • [15] M. Dubois, Optimized Permanent Magnet Generator Topologies for Direct Drive Wind Turbines, Ph.D. Dissertation, Delft University of Technology, Delft, Netherlands, 2004.
  • [16] P. Lampola, Directly Driven, Low-Speed Permanent-Magnet Generators for Wind Power Applications, Ph.D. Dissertation, Helsinki University of Technology, Helsinki, Finland, 2000.
  • [17] R. Poore and T. Lettenmaier, Alternative Design Study Report: Windpact Advanced Wind Turbine Drive Train Designs Study, Subcontractor report NREL/SR-500‒33196, National Renewable Energy Laboratory, Golden, CO, USA, 2003.
  • [18] H. Polinder, F.F.A. Pijl, G.J. De Vilder, and P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbine”, IEEE Transactions on Energy Conversion 21, 725–733 (2006).
  • [19] R.S. Semken, M. Polikarpova, P. Roytta, J. Alexandrova, J. Pyrhonen, J. Nerg, A. Mikkola, and J. Backman “Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors”, IET Renewable Power Generation 6 (1), 1–8 (2012).
  • [20] P.W. Eckels and G. Snitchler, “5 MW high temperature superconductor ship propulsion motor design and test results”, Naval Engineers Journal 117 (4), 31–36 (2004).
  • [21] B. Badrzadeh, “Qualitative performance assessment of semiconductor switching device, converter and generator candidates for 10 MW offshore wind turbine generators”, Wind Energy 14 (3), 425–448 (2011).
  • [22] A. Gupta, D.K. Jain, and S. Dahiya, “Some investigations on recent advances in wind energy conversion systems”, IPCSIT 28, 47–52 (2012).
  • [23] G.M. Pellergrino, F. Villata, P. Guglielmi, and A. Vagati, “Design of direct-drive, low-speed PM machines”, Industry Applications Conference, 38th IAS Annual Meeting 2, 1421–1428 (2003).
  • [24] K.W.E. Cheng, J.K. Lin, Y.J. Bao, and X.D. Xue, “Review of the wind energy generating system”, 8th International Conference APSCOM, (2009).
  • [25] R. Schiferl, “High-temperature superconducting synchronous motors: economic issues for industrial applications”, IEEE Transactions on Industry Applications 44 (5), 1376–1384 (2008).
  • [26] C. Lewis and J. Muller, “A direct drive wind turbine HTS generator”, 2007 IEEE Power Engineering Society General Meeting, (2007).
  • [27] S.S. Kalsi, K. Weeber, H. Takesue, C. Lewis, H.W. Neumueller, and R.D. Blaugher, “Development status of rotating machines employing superconducting field winding”, Proc. IEEE 92 (10), 1688–1704 (2004).
  • [28] S.S. Kalsi, “Development status of superconducting rotating machines”, 2002 IEEE Power Engineering Society Winter Meeting 1, 401–403 (2002).
  • [29] J.R. Hull and M. Murakami, “Applications of bulk high temperature superconductors”, Proc. IEEE 92 (10), 1705–1718 (2004).
  • [30] P.J. Masson and C.A. Luongo, “High power density superconducting motor for all-electric aircraft propulsion”, IEEE Transactions on Applied Superconductivity 15 (2), 2226–2229 (2005).
  • [31] M.J. Superczynski and D.J. Waltman, “Homopolar motor with high temperature superconductor field windings”, IEEE Transactions on Applied Superconductivity 7 (2), 513–518 (1997).
  • [32] R. Strzelecki and H. Supronowicz, The Power Factor of AC Circuits and Correction Method, pp. 120–135, OWPW, Warszawa, 2000, [in Polish].
  • [33] D. Schulz, “Improved Grid Integration of Wind Energy Systems”, Bull. Pol. Ac.: Tech. 57 (4), 311–315 (2009).
  • [34] M. Krystkowiak and M. Gwóźdź, “Simulation and experimental models of 3-phase diode rectifier with current modulation in DC circuit”, Przegląd Elektrotechniczny R87 (1), 75–79 (2011).
  • [35] A. Pantea, A. Yazidi, F. Betin, G.A. Capolino, and V. Lanfranchi, “Six-phase axial flux permanent magnet generator model: simulation and experimental validation”, 2016 IEEE 25th International Symposium on Industrial Electronics, 192–197 (2016).
  • [36] P. Stawczyk and S Karys “Three-phase one-branch controlled bridge rectifier for permanent magnet AC synchronous generator”, 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 450–454 (2016).
  • [37] Windtec Solutions, Seatitan 10 MW, http://www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-sheet.
  • [38] MITSUBISHI ELECTRIC, Power Module Loss Simulator, http://www.mitsubishielectric.com/semiconductors/dm/u_als_form.html.
  • [39] http://www.vishay.com/product?docid=93565.
  • [40] http://www.mitsubishielectric.com/semiconductors/products/powermod/intelligentpmod/index.html.
  • [41] http://analog.alfine.pl/oferta/produkty-alfine/systemy-uruchomieniowe.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40b52029-19f9-4391-a608-f9fdac0d821b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.