Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work concerns the selection of the programming language and environment for the needs of neural modeling of the power and electricity demand generation system in terms of uninhabited factories. Therefore, the main goal of the conducted research is to obtain the best possible Artificial Neural Network, i.e. to teach it a model of a real system, which is a system for generating demand for power and electricity based on numerical data on parts of the power system operation in terms of uninhabited factories. The learning capabilities of artificial neural networks were checked by comparing the MSE error and the Regression Index R2. In each of the examined programming languages and related programming environments, i.e. Matlab, Python and Wolfram, an Artificial Neural Network with the same structure and properties was designed and implemented, i.e. with the same number of input and output neurons, the number of hidden layers and the number of neurons in them, the activation function of neurons and the learning method. In addition to the ANN training of the system model, testing and validation as well as comparative studies were carried out.
Rocznik
Tom
Strony
95--106
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
- University of Siedlce, Faculty of Exact and Natural Sciences, Institute of Computer Science, ul. 3 Maja 54, 08-110 Siedlce, Poland
autor
- University of Siedlce, Faculty of Exact and Natural Sciences, Institute of Computer Science, ul. 3 Maja 54, 08-110 Siedlce, Poland
Bibliografia
- 1. Aribib M.A.: The Handbook of Brain Theory and Neural Networks, The MIT Press, Cambridge, pages 1134, 2003.
- 2. Bahi M., Batouche M.: Deep Learning for Ligand-Based Virtual Screening in Drug Discovery, 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, pp. 1-5, 2018.
- 3. Beale M., Hagan M., Demuth H.: Deep Learning Toolbox User’s Guide, The MathWorks, Natick 2020-2022.
- 4. Błaszczyk P.: Sztuczna Inteligencja, Uniwersytet Śląski (in Polish), http://books.icse.us.edu. pl/runestone/static/ai/index.html (access: 28.02.2023).
- 5. Capellman J.: Hands-On Machine Learning with ML.NET, Packt Publishing, Birmingham, pages 296, 2020.
- 6. Chollet F.: Deep Learning with Python, Manning’s Publications Co., Shelter Island, pages 478, 2021.
- 7. Chonacky, N., Winch,D.: Reviews of Maple, Mathematica,and Matlab:Coming Soontoa Publication Near You. Computing in Science & Engineering, IEEE XPlore Digital Library, Vol. 7, No. 2, pp. 9-10, March-April 2005.
- 8. Ciskowski P.:Poznawanie własności sieci neuronowych w środowisku MATLAB (inPolish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pages 102, 2012.
- 9. Demuth H., Beale M.: Neural Network Toolbox User’s Guide, The MathWorks, Natick 2002-2019.
- 10. Di Marco F.: TensorFlow implementation of Levenberg-Marquadt training algorithm: https: //github.com/fabiodimarco/tf-levenberg-marquardt(access: 15.02.2023r.)
- 11. Freeman J.A.: Simulating Neural Networks with Mathematica, Addison-Wesley Publishing Company, Reading, pages 341, 1994.
- 12. Giełdowa Platforma Informacyjna,Słownik pojęć (inPolish), http://gpi.tge.pl/informacje/slownik-pojec (access: 16.01.2023).
- 13. Guesmi L., Fathallah, H., Menif M.: Modulation Format Recognition Using Artificial Neural Networks for the Next Generation Optical Networks, pp. 2-19. 2018.
- 14. Haykin S.: Neural Networks, A Comprehensive Foundation, Pearson Education, New Delhi, pages 842, 1999.
- 15. Jain L., Fanelli A.M.: Recent advances in Artificial Neural Networks Design and Applications, CRCPress, Boca Raton, pages 372, 2017.
- 16. Karampelas P., Vita V., Pavlatos C., Mladenov V., Ekonomou L.: Design of Artificial Neural Network Models for the Prediction of the Hellenic Energy Consumption, 10th Symposium on Neural Network Applications in Electrical Engineering NEUREL-2010, Faculty of Electrical Engineering, University of Belgrade, pp. 41-44, 2010.
- 17. Kasabov N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, The MIT Press, Cambridge, pages 581, 1998.
- 18. Kingma D.P., Ba J.L.: Adam: A Method for Stochastic Optimization, International Conference on Learning Representations, San Diego, pages 13, 2015
- 19. Marlęga R.:Correction of the parametric model of the Day-Ahead Market system using the Artifical Neural Network, Studia Informatica. Systems and Information Technology, Vol. 1(26)2022, pp. 85-105.
- 20. Math Works, Perceptron Neural Networks, MATLAB Help Center 2022, https: //www.mathworks.com/help/deeplearning/ug/perceptron-neural-networks.html (access: 05.02.2023).
- 21. Math Works, The: Hyperbolic tangent sigmoid transfer function, MATLAB Help Center, 2022, https://www.mathworks.com/help/deeplearning/ref/tansig.html (access: 05.02.2023).
- 22. Obuchowicz A.: Optimization of Neural Network Architectures, Chapter9,[in:] Intelligent Systems, [eds] Wilamowski B. M., Irvin J. D., The Industrial Electronics Handbook, Second Edition, Taylor and Francis Group, LLC, pp. 9.1-9.24, 2011.
- 23. Obuchowicz, A. 2000. Optimization of neural network architectures. In Biocybernetics and Biomedical Engineering (in Polish), Neural Networks, [eds.] W. Duch, J. Korbicz, L. Rutkowski, and R. Tadeusiewicz, Academic Publishing House EXIT, Warsaw, pp. 323-368, 2000.
- 24. Osowski S.: Sieci neuronowe do przetwarzania informacji (in Polish), OW PW, Warszawa, pages 422, 2013.
- 25. Patterson J., Gibson A.: Deep Learning. Parctitioner’s Aproach, O’Reilly Media, Sebastopol, pages 83, 2017.
- 26. Płaczek S., Płaczek A.: Uczenie wielowarstwowych szerokich sieci neuronowych z funkcjami aktywacji typu ReLU w zadaniach klasyfikacji (in Polish), Poznań University of Technology Academic Journals, pp. 47-58, Poznań 2018.
- 27. Polskie Sieci Elektroenergetyczne SA, Wielkości podstawowe raportów dobowych z pracy KSE (in Polish), https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/ raporty-dobowe-z-pracy-kse (access: 26.01.2023, 08.05.2022)
- 28. Rosochacki S.: Komparatystyka języków programowania do modelowania sztucznej sieci neuronowej z wykorzystaniem danych dotyczących Krajowego Systemu Elektroenergetycznego, Praca inżynierska napisana w Instytucie Informatyki pod kierunkiem dr hab. inż. Jerzego Tchórzewskiego, prof. uczelni, Wydział Nauk Ścisłych i Przyrodniczych, UPH, Siedlce, pages, 67, 2023.
- 29. Ruciński D.: Modeling of the Day-Ahead Market on the Polish Power Exchange on the Example of Selected Artificial Neural Networks, Chapter 4, [in:] Theory and Application of Artificial Neural Intelligence Methods, [eds.:] Tchórzewski J., Świtalski P., Series Intelligent Systems and Information Technologies, Wydawnictwo UPH, Siedlce, pp. 85-117, 2022.
- 30. Sartori M.A., Antsaklis P.J.: A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Transaction of Neural Network, 2(4), pp. 467-71, 1991.
- 31. Sci Sharp: Tensorflow.NET, https://scisharp.github.io/tensorflow-net-docs/ (access: 02.02.2023)
- 32. Shah M.: Fundamentals of Computer Vision, University of Central Florida, Orlando, pages 133, 1997.
- 33. Tadeusiewicz R.: Sieci neuronowe (in Polish), Akademicka Oficyna Wydawnicza, Warszawa, pages 195, 1993.
- 34. Tadeusiewicz R.: Archipelag sztucznej inteligencji (in Polish), OW EXIT, Warszawa, pages 126, 2022.
- 35. Tamura S, Tateishi M.: Capabilities of a four layered feedforward neural network: four layers versus three. IEEE Transaction of Neural Network, 8(2), pp. 251-155, March 1997.
- 36. Tauron Polska Energia, Karta Aktualizacji nr 16/2020 https://www.tauron-dystrybucja.pl//media/offer-documents/dystrybucja/uslugi-dystrybucyjne/iriesd/26-05-2020/projekt_karty_aktualizacji_16_2020_iriesd.ashx (access: 26.01.2023)
- 37. Tchórzewski J.: Metody sztucznej inteligencji i informatyki kwantowej w ujęciu teorii sterowania i systemów (in Polish), Wydawnictwo Naukowe UPH, Siedlce, pages 343, 2021.
- 38. Tchórzewski J.: Rozwój systemu elektroenergetycznego w ujęciu teorii sterowania i systemów (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pages 190, 2013.
- 39. Tchórzewski J., Wielgo A.: Neural model of human gait and its implementation in MATLAB and Simulink Environment using Deep Learning Toolbox, Studia Informatica. Systems and Information Technology, Vol. 1-2(25)2021, pp. 39-65.
- 40. Tensor Flow Team, The.: Introduction to Tensor Flow Datasets and Estimators, Google Developers Blog, 2017, https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html (access: 28.02.2023).
- 41. Yang T., Blom H.A., Mehta P.G.: Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems, Proceedings of the IEEE Annual Conference on Decision and Control (CDC), pp. 7065-7070, 2013.
- 42. Żurada J., Barski M., Jędruch W.: Sztuczne Sieci neuronowe. Podstawy teorii i zastosowania (in Polish), Wydawnictwo PWN, Warszawa, pages 375, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40b40ae6-0958-4096-8c75-7b0008a69be3