PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlations for the thermal conductivity of selected steel grades as a function of temperature in the range of 0–800◦C

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliable knowledge of thermo-physical properties of materials is essential for the interpretation of solidification behaviour, forming, heat treatment and joining of metallic systems. It is also a precondition for precise simulation calculations of technological processes. Numerical calculations usually require the knowledge of temperature dependencies of three basic thermo-physical properties: thermal conductivity, heat capacity and density. The objective of this work is to find a correlation that fits the thermal conductivity of selected steel grades as a function of temperature (within the range of 0–800◦C) and carbon content (within the range of 0.1–0.6%). The starting point for the analysis are the experimental data on thermal conductivity taken from literature. Using the method of least squares it was possible to fit an equation which allows calculating the thermal conductivity of steel depending on the temperature and carbon content. Two kinds of equations have been analyzed: a linear one (a linear model) and a second degree polynomial (a non-linear model). The thermal conductivity obtained by linear and nonlinear models varies on average from the measured values by 3% and 2.6% respectively.
Rocznik
Strony
29--45
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Czestochowa University of Technology, Department of Production Management, Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Czestochowa University of Technology, Department of Production Management, Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
Bibliografia
  • [1] Sahay S.S., Kumar A.M.: Application of integrated batch annealing furnace simulator. Mater. Manuf. Process. 17(2002), 4, 439–453.
  • [2] Sahay S.S., Krishnan K., Kuthle M., Chodha A., Bhattacharya A., Das A.K.: Model-based optimization of a highly automated industrial batch annealing operation. Eng. Mater. Sci. – Ironmak. Steelmak. 33(2006), 306–314.
  • [3] Cengel Y.A.: Heat Transfer and Mass Transfer – A Practical Approach (3rd Edn.). McGraw Hill, New York 2002.
  • [4] Oleśkiewicz-Popiel Cz., Wojtkowiak J.: Experiments in Heat Transfer. Wydawn. Politechniki Poznańskiej, Poznań 2007 (in Polish).
  • [5] Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford Univ. Press, London 1959.
  • [6] Maglic K.D., Cezailliyan A., Peletsky V.E. (Eds.): Compendium of Thermophysical Property Measurements Methods: Recommended Measurement Techniques and Practices. Pleneum Press, New York 1992.
  • [7] Shirtliffe C.J., Tye R.P.: Guarded Hot Plate and Heat Flow Meter Methodology. ASTM, Philadelphia 1985.
  • [8] Beyan A., Kraus A.D. (Eds.): Heat Transfer Handbook, Chap. 2.3.4 Measuring Thermophysical Properties in Solids. Wiley, New Jersey 2003.
  • [9] Koltys J.: Determination of thermal conductivity of steel 1H18N9T. Prace Naukowe Politechniki Warszawskiej, ser. Konferencje, 26(2009), 219–226.
  • [10] Koltys J., Furmanski P., Domanski R.: Determination of thermal conductivity of highly conducting materials by comparative method using parameter estimation technique. In: Proc. 26th Int. Conf. Thermal Conductivity of Highly Conducting Conference, Boston, 6-8 August 2001.
  • [11] Domański R., Gogół E., Gogół W.: Measurements of the thermal conductivity of steel. J. Power Technol. 39(2011), 3–21.
  • [12] Bode K.H.: 45 – measurements of the thermal conductivity of metals at high temperatures. Prog. Int. Res. Thermodyn. Transport Prop. (1962), 81–499.
  • [13] In-Rak Ch., Kyung-Soo Ch., Do-Hwan K.: Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures. Mater. Des. 63(2014), 544–551.
  • [14] Bodzenta J.: Heat Transport in Thin Layers and Measurements of Their Thermal Properties. Wydawn. Politechniki Śląskiej, Gliwice 2006 (in Polish).
  • [15] Incropera F.P., DeWitt D.P.: Fundamentals of Heat and Mass Transfer (4th Edn.). Wiley, New York 1996.
  • [16] Wiśniewski S., Wiśniewski S.T.: Heat Transfer. WNT, Warszawa 2012 (in Polish).
  • [17] Callister W.D.: Materials Science and Engineering: An Introduction (5th Edn.). Wiley, New York 2000.
  • [18] Abu-Eishah S.I.: Correlations for the thermal conductivity of metals as a function of temperature. Int. J. Thermophys. 22(2001), 1855–1868.
  • [19] Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P. (Eds.): Thermophysical Properties of Matter Vol. 1. Thermal Conductivity of Metallic Solids. Plenum Press, New York 1972.
  • [20] Sverdlin A.V., Ness A.R.: Fundamental concepts in steel heat treatment. In: Steel Heat Treatment – Metallurgy and Technologies Chap. 2. CRC Taylor & Francis Group, Boca Raton Londyn New York 2006.
  • [21] Powell, R.W. Hickman, M.J.: Thermal conductivity of a 0.8% carbon steel. J. Iron Steel Inst. 154(1945), 112–116.
  • [22] Richter F.: Die Wichtigsten Physikalischen Eigenschaften von 52 Eisenwerkstoffen. Verlag Stahleisen, Dusseldorf 1973.
  • [23] Krivandin V., Markov B.: Metallurgical Furnaces. MIR, Moscow 1980.
  • [24] Raźniević K.: Thermal Tables with Graphs. WNT, Warszawa 1966 (in Polish).
  • [25] Peet M.J., Hasan H.S., Bhadeshia H.K.D.H.: Prediction of thermal conductivity of steel. Int. J. Heat Mass Tran. 54(2011), 2602–2608.
  • [26] Nellys G., Klein S.: Heat Transfer. Cambridge Univ. Press, 2012.
  • [27] Sahay S.S., Krishman K.: Model based optimization of continuous annealing operation for bundle of packed rods. Iron Steelmak. 34(2007), 1, 89–94.
  • [28] Jaluria Y.: Numerical simulation of the transport process in a heat treatment furnace. Int. J. Numer. Meth. Eng. 25(1988), 387–399.
  • [29] Rao T.R., Barth G.J., Miller J.R.: Computer model prediction of heating, soaking and cooking times in batch coil annealing. Iron Steel Eng. 60(1983), 9, 22–33.
  • [30] Laden B.: A control system for fuel optimization reheating furnaces. Scand. J. Metall. 15(1986), 16–24.
  • [31] Senkara T.: Thermal Calculations of Heating Furnaces in Methalurgy. Wydawn. Śląsk, Katowice 1981 (in Polish).
  • [32] Kulesza J.: Measurements of thermal conductivity. In: Thermal measurements. Part I, (T. Fodemski, Ed.). WNT, Warszawa 2001 (in Polish).
  • [33] Nowak A.: Selected methods of measuring the heat conductivity coefficient. In: Proc. Sem. on Heat Flow in the Processes of Heating and Cooling Metals, UstrońJaszowiec, 1986, 94–102 (in Polish).
  • [34] Gogół W.: Measurements of Thermal Conductivity. Zeszyty Naukowe Politechniki Łódzkiej 606, 1991 (in Polish).
  • [35] Majchrzak E., Mochnacki B.: Numerical Methods – Theoretical Foundations, Practical Aspects and Algorithms. Wydawnictwo Politechniki Śląskiej, Gliwice 2004 (in Polish).
  • [36] Wyczółkowski R., Gała M., Bagdasaryan W.: Model of complex heat transfer in the package of rectangular steel sections. Appl. Sci. 10(2020), 9044.
  • [37] Wyczółkowski R., Bagdasaryan V., Szwaja S.: On determination of the effective thermal conductivity of a bundle of steel bars using the Krischer model and considering thermal radiation. Materials 14(2021), 4378.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40b0acbd-db48-4fc1-a471-829f61e617ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.