PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of selected nanoparticles on rheological properties of human blood

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the influence of selected nanoparticles, namely diesel exhaust particles, Arizona test dust, silver and gold on the rheology of human blood. The rheological properties of human blood were determined with the use of a modular rheometer, at two various temperatures, namely 36.6°C and 40°C. Experimental results were used to calculate the constants in blood constitutive equations. The considered models were power-law, Casson and Cross ones. The obtained results demonstrate that the presence of different nanoparticles in the blood may have different effect on its apparent viscosity depending on the type of particles and shear rate.
Rocznik
Strony
art. no. e140437
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • [1] C.-L. Myung and S. Park, “Exhaust nanoparticle emissions from internal combustion engines: A review,” Int. J. Automotive Technol., vol. 13, p. 9, 2011, doi: 10.1007/s12239-012-0002-y.
  • [2] T. Rönkkö and H. Timonen, “Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas,” J. Alzheimer’s Dis., vol. 72, pp. 15–28, 2019, doi: 10.3233/JAD-190170.
  • [3] B. Naseer, G. Srivastava, O. Qadri, S. Faridi, R. Ul Islam, and K. Younis, “Importance and health hazards of nanoparticles used in the food industry,” Nanotechnol. Rev., vol. 7, pp. 623–641, 2018, doi: 10.1515/ntrev-2018-0076.
  • [4] K. Tiede et al., “How important is drinking water exposure for the risks of engineered nanoparticles to consumers?” Nanotoxicology, vol. 10, pp. 102–110, 2016, doi: 10.3109/17435390.2015.10228.
  • [5] A. Penconek and A. Moskal, “Deposition of diesel exhaust particles from various fuels in a cast of human respiratory system under two breathing patterns,” J. Aerosol Sci., vol. 63, pp. 48–59, 2013, doi: 10.1016/j.jaerosci.2013.04.008.
  • [6] A. Nemmar, M. Hoylaerts, P. Hoet, and B. Nemery, “Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects,” Toxicol. Lett., vol. 149, pp. 243–253, 2004, doi: 10.1159/000430315.
  • [7] J. Vermylen, A. Nemmar, B. Nemery, and M. Hoylaert, “Ambient air pollution and acute myocardial infarction,” J. Thromb. Haemost., vol. 3, pp. 1955–1961, 2005, doi: 10.1111/j.1538-7836.2005.01471.x.
  • [8] R. Brook et al., “Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association,” Circulation, vol. 121, pp. 2331–2378, 2010, doi: 10.1161/CIR.0b013e3181dbece1.
  • [9] T. Sosnowski, “Nanosized and Nanostructured Particles in Pulmonary Drug Delivery,” J. Nanosci. Nanotechnol., vol. 5, pp. 3476–3487, 2015, doi: 10.1108/HFF-12-2019-0910.
  • [10] J. Prakash, D. Tripathi, A. Tiwari, S. Dait, and R. Ellahi, “Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels,” Symmetry, vol. 11, p. 868, 2019, doi: 10.3390/sym11070868.
  • [11] D. Tripathi, J. Prakash, A. Tiwari, and R. Ellahi, “Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels,” Microvasc. Res., vol. 132, p. 104065, 2020, doi: 10.1016/j.mvr.2020.104065.
  • [12] A. Elelamy, N. Elgazery, and R. Ellahi, “Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: Application of bacterial growth in heart valve,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, pp. 4883–4908, 2020, doi: 10.1166/jnn.2015.9863.
  • [13] M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, and S. Abdelsalam, “Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries,” Front. Phys., vol. 8, p. 95, 2020, doi: 10.3389/fphy.2020.00095.
  • [14] E. Nader et al., “Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise,” Front. Physiol., vol. 10, p. 1329, 2019, doi: 10.3389/fphys.2019.01329.
  • [15] J. Mazumdar, Biofluid Mechanics. Singapore: World Scientific, 1992.
  • [16] R. Pal, “Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes,” J. Biomech., vol. 36, pp. 981–989, 2003, doi: 10.1016/S0021-9290(03)00067-8.
  • [17] C. Picart, J. Piau, H. Galliard, and P. Carpentier, “Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects,” Biorheology, vol. 35, pp. 335–353, 1998, doi: 10.1016/S0006-355X(99)80015-8.
  • [18] A. Zydney, “A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase,” J. Rheol., vol. 35, pp. 1639–1680, 1991, doi: 10.1122/1.550249.
  • [19] J. Barber, J. Alberding, J. Restrepo, and T. Secomb, “Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations,” Ann. Biomed. Eng., vol. 36, pp. 1690–1698, 2008, doi: 10.1007/s10439-008-9546-4.
  • [20] A. Nemmar, S. Zia, D. Subramaniyan, I. Al-Amri, M. Al-Kindi, and B. Ali, “Interaction of Diesel Exhaust Particles with Human, Rat and Mouse Erythrocytes in Vitro,” Cell. Physiol. Biochem., vol. 29, pp. 163–170, 2012, doi: 10.1159/000337597.
  • [21] M. Hussain, S. Kar, and R. Puniyani, “Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity,” J. Biosci., vol. 24, pp. 329–337, 1999, doi: 10.1007/BF02941247.
  • [22] P. Neofytou, “Comparison of blood rheological models for physiological flow simulation,” Biorheology, vol. 41, pp. 693–714, 2004.
  • [23] M. Gallagher, R. Wain, S. Dari, J. Whitty, and D. Smith, “Non-identifiability of parameters for a class of shear-thinning rheological models, with implications for haematological fluid dynamics,” J. Biomech., vol. 85, pp. 230–238, 2019, doi: 10.1016/j.jbiomech.2019.01.036.
  • [24] S. Shewaferaw, S. Shibeshi, and W. Collins, “The Rheology of Blood Flow in a Branched Arterial System,” Appl. Rheol., vol. 15, pp. 398–405, 2005, doi: 10.1901/jaba.2005.15-398.
  • [25] X. Shi et al., “Effects of different shear rates on the attachment and detachment of platelet thrombi,” Mol. Med. Rep., vol. 13, pp. 2447–2456, 2016, doi: 10.3892/mmr.2016.4825.
  • [26] Y. Cho, J. Cho, and R. Rosenson, “Endothelial Shear Stress and Blood Viscosity in Peripheral Arterial Disease,” Curr. Atheroscler. Rep., vol. 16, p. 404, 2014, doi: 10.1007/s11883-014-0404-6.
  • [27] J. Czepiel et al., “Rheological properties of erythrocytes in patients infected with Clostridium difficile,” Adv. Hyg. Exp. Med., vol. 68, pp. 1397–1405, 2014, doi: 10.5604/17322693.1130558.
  • [28] O. Baskurt, “Pathophysiological Significance of Blood Rheology,” Turk. J. Med. Sci., vol. 33, pp. 347–355, 2003.
  • [29] N. Gershfeld and M. Murayama, “Thermal Instability of Red Blood Cell Membrane Bilayers: Temperature Dependence of Hemolysis,” J. Membr. Biol., vol. 101, pp. 67–72, 1988.
  • [30] R. Devereux, D. Case, M. Alderman, T. Pickering, S. Chien, and J. Laragh, “Possible role of increased blood viscosity in the hemodynamics of systemic hypertension,” Am. J. Cardiol., vol. 85, pp. 1265–1268, 2000, doi: 10.1016/S0002-9149(00)00744-X.
  • [31] X. Li, H. Li, H.-Y. Chang, G. Lykotrafitis, and G. Karniadaki, “Computational Biomechanics of Human Red Blood Cells in Hematological Disorders,” J. Biomech. Eng., vol. 139, p. 021008, 2017, doi: 10.1115/1.4035120.
  • [32] R. Gal et al., “Hemorheological Alterations in Patients with Heart Failure with Reduced Ejection Fraction Treated by Resveratrol,” Cardiovasc. Ther., vol. 2020, p. 7262474, 2020, doi: 10.1155/2020/7262474.
  • [33] M. Akcaboy, B. Nazliel, T. Goktas, S. Kula, B. Celik, and N. Buyan, “Whole blood viscosity and cerebral blood flow velocities in obese hypertensive or obese normotensive adolescents,” J. Pediatr. Endocrinol. Metabol., vol. 31, pp. 275–281, 2018, doi: 10.1515/jpem-2017-0436.
  • [34] A. Rasyid, S. Harris, M. Kurniawan, T. Mesiano, and R. Hidayat, “Fibrinogen and LDL Influence on Blood Viscosity and Outcome of Acute Ischemic Stroke Patients in Indonesia,” Ann. Neurosci., vol. 26, pp. 30–34, 2019, doi: 10.1177/0972753119900630.
  • [35] A. Alamin, “The Role of Red Blood Cells in Hemostasis,” Semin. Thromb. Hemost., vol. 47, pp. 26–31, 2021, doi: 10.1055/s-0040-1718889.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40ac8627-6af3-47d5-9cd7-1a6840ce0b20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.