PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurately modeling claims data and determining appropriate insurance premiums are vital responsibilities for non-life insurance firms. This article presents novel models for claims that offer improved precision in fitting claim data, both in terms of claim frequency and severity. Specifically, we suggest the Poisson-GaL distribution for claim frequency and the exponential-GaL distribution for claim severity. The traditional method of assigning automobile premiums based on a bonus-malus system relies solely on the number of claims made. However, this may lead to unfair outcomes when an insured individual with a minor severity claim is charged the same premium as someone with a severe claim. The second aim of this article is to propose a new model for calculating bonus-malus premiums. Our proposed model takes into account both the number and size of claims, which follow the Poisson-GaL distribution and the exponential-GaL distribution, respectively. To calculate the premiums, we employ the Bayesian approach. Real-world data are used in practical examples to illustrate how the proposed model can be implemented. The results of our analysis indicate that the proposed premium model effectively resolves the issue of overcharging. Moreover, the proposed model produces premiums that are more tailored to policyholders’ claim histories, benefiting both the policyholders and the insurance companies. This advantage can contribute to the growth of the insurance industry and provide a competitive edge in the insurance market.
Rocznik
Strony
637--650
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
  • Department of Computer Science, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Department of Statistics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
Bibliografia
  • [1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control 19(6): 716-723.
  • [2] Bulbul, S. and Baykal, K. (2016). Optimal bonus malus system design in motor third party liability insurance in Turkey: Negative binomial model, International Journal of Economics and Finance 8(8): 205-211.
  • [3] Bühlmann, H. (1970). Mathematical Methods in Risk Theory, Springer, New York.
  • [4] Cojocaru, I. (2017). Ruin probabilities in multivariate risk models with periodic common shock, Scandinavian Actuarial Journal 2017(2): 159-174.
  • [5] De Jong, P. and Heller, G. (2008). Generalized Linear Models for Insurance Data, Cambridge University Press, New York.
  • [6] Emad, A. and Ali, I. (2016). Bayesian approach for bonus-malus systems with Gamma distributed claim severities in vehicles insurance, British Journal of Economics, Management, and Trade 14(1): 1-9.
  • [7] Frangos, N. and Vrontos, S. (2001). Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance, Astin Bulletin 31(1): 1-22.
  • [8] Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281-297, DOI: 10.34768/amcs-2020-0022.
  • [9] Grzegorzewski, P. and Romaniuk, M. (2022). Bootstrap methods for epistemic fuzzy data, International Journal of Applied Mathematics and Computer Science 32(2): 285-297, DOI: 10.34768/amcs-2022-0021.
  • [10] Karlis, D. and Xekalaki, E. (2005). Mixed Poisson distributions, International Statistical Review 73(1): 35-58.
  • [11] Lemaire, J. (1995). Bonus-malus systems in automobile insurance, Insurance: Mathematics and Economics 3(16): 227.
  • [12]Lindley, D. (1958). Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society B 20(1): 102-107.
  • [13] Matsui, M. and Rolski, T. (2016). Prediction in a mixed Poisson cluster model, Stochastic Models 32(3): 460-480.
  • [14] Mert, M. and Saykan, Y. (2005). On a bonus-malus system where the claim frequency distribution is geometric and the claim severity distribution is Pareto, Hacettepe Journal of Mathematics and Statistics 34(1): 75-81.
  • [15] Moumeesri, A., Klongdee, W. and Pongsart, T. (2020). Bayesian bonus-malus premium with Poisson-Lindley distributed claim frequency and lognormal-Gamma distributed claim severity in automobile insurance, WSEAS Transactions on Mathematics 19(46): 443-451.
  • [16] Moumeesri, A. and Pongsart, T. (2022). Bonus-malus premiums based on claim frequency and the size of claims, Risks 10(9): 181.
  • [17] Nedjar, S. and Zeghdoudi, H. (2016). On Gamma Lindley distribution: Properties and simulations, Journal of Computational and Applied Mathematics 298: 167-174.
  • [18] Ni, W., Constantinescu, C. and Pantelous, A. (2014). Bonus-malus systems with Weibull distributed claim severities, Annals of Actuarial Science 8(2): 217-233.
  • [19] Nowak, P. and Romaniuk, M. (2013). A fuzzy approach to option pricing in a Levy process setting, International Journal of Applied Mathematics and Computer Science 23(3): 613-622, DOI: 10.2478/amcs-2013-0046.
  • [20] Pongsart, T., Moumeesri, A., Mayureesawan, T. and Phaphan, W. (2021). Computing Bayesian bonus-malus premium distinguishing among different multiple types of claims, Lobachevskii Journal of Mathematics 42(13): 3208-3217.
  • [21] Romaniuk, M. (2017). Analysis of the insurance portfolio with an embedded catastrophe bond in a case of uncertain parameter of the insurer’s share, in A. Grzech et al. (Eds), Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology, ISAT 2016. Part IV: Advances in Intelligent Systems and Computing, Springer, Berlin/Heidelberg, pp. 33-43.
  • [22] Sankaran, M. (1970). The discrete Poisson-Lindley distribution, Biometrics 26(1): 145-149.
  • [23] Shanker, R. and Mishra, A. (2013). A two-parameter Lindley distribution, Statistics in Transition-New Series 14(1): 45-56.
  • [24] Shanker, R. and Mishra, A. (2014). A two-parameter Poisson-Lindley distribution, International Journal of Statistics and Systems 9(1): 79-85.
  • [25] Stone, M. (1979). Comments on model selection criteria of Akaike and Schwartz, Journal of the Royal Statistical Society B 41(2): 276-278.
  • [26] Tank, F. and Tuncel, A. (2015). Some results on the extreme distributions of surplus process with nonhomogeneous claim occurrences, Hacettepe Journal of Mathematics and Statistics 44(2): 475-484.
  • [27] Tremblay, L. (1992). Using the Poisson inverse Gaussian in bonus-malus systems, Astin Bulletin 22(1): 97-106.
  • [28] Tzougas, G., Hoon, W. and Lim, J. (2019a). The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking, European Actuarial Journal 9(1): 323-344.
  • [29] Tzougas, G., Yik, W. and Mustaqeem, M. (2019b). Insurance ratemaking using the exponential-lognormal regression model, Annals of Actuarial Science 14(1): 42-71.
  • [30] Walhin, J. and Paris, J. (1999). Using mixed Poisson processes in connection with bonus-malus systems, ASTIN Bulletin 29(1): 81-99.
  • [31] Willmot, G. (1986). Mixed compound Poisson distributions, ASTIN Bulletin 16(1): 59-79.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40ab4972-cf8d-40f0-a190-76c3535ca006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.