Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Machinability investigation of 9CrSi steel by electric discharge machining (EDM with the addition of tungsten powder alloy is rarely investigated. Therefore, in this study, the impact of control parameters {comprising peak-current (Ip), pulse-on time (Ton), and powder amount (Cp)} on machining features including material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra), was explored. Furthermore, determining the optimal domain of control parameters is meaningful in improving the MRR, Ra, and reducing TWR. In order to achieve this, the MRR, Ra, and TWR prediction models were established and assessed using analysis of variance (ANOVA) to verify the models' suitability and accuracy. Eventually, the Grey Relational Analysis (GRA) technique and the Desired Approach (DA) were used for the multi-criteria optimization. The results revealed that Ip proves the most robust influence on MRR, TWR, whilst Ton has the most impact on Ra. However, the sequent influence is Ton and Cp for MRR and TWR, and Ip and Cp for Ra . Compared to GRA, the MRR value derived from DA is 399.3% higher. For TWR and Ra, the GRA provides the best optimal solution, with comparable drops of 22.34% and 48.3% as compared to DA. In addition, the surface characteristics (defects, compositional chemistry, and recast layer thickness) obtained from optimal parameters of two algorithms were also explored.
Wydawca
Rocznik
Tom
Strony
449--466
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
- Mechanical Engineering Department, Le Quy Don Technical University, Hanoi, Vietnam
autor
- Advanced Technology Center, Le Quy Don Technical University, Hanoi, Vietnam
autor
- Academy of Military Science and Technology, Hanoi, Vietnam
Bibliografia
- 1. Ishfaq, K., Rehman, M., Wang, Y. Toward the targeted material removal with optimized surface finish during EDM for the repair applications in dies and molds. Arab Journal of Science and Engineering 2023; 48: 2653–69. https://doi.org/10.1007/s13369-022-07006-x.
- 2. Srivastava, S., Vishnoi, M., Gangadhar, M.T., Kukshal, V. An insight on powder mixed electric discharge machining: a state‑of‑the art review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2023; 237: 657–90. https://doi.org/10.1177/09544054221111896.
- 3. Singh, R., Singh, R.P., Trehan, R. State of the art in processing of shape memory alloys with electrical discharge machining: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2021; 235: 333–66. https://doi.org/10.1177/0954405420958771.
- 4. Le, V.T. The machined performance and recast layer properties of AISI H13 steel processed by powder mixed EDM process: an investigation and comparison in fine‑finishing and semi‑finishing processes. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021; 43: 514. https://doi.org/10.1007/s40430-021-03243-7.
- 5. Ho, K., Newman, S. State of the art electrical discharge machining (EDM). International Journal of Machine Tools & Manufacture 2003; 43: 1287–300. https://doi.org/10.1016/S0890-6955(03)00162-7.
- 6. Erden, A., Bilgin, S. Role of impurities in electric discharge machining. In: Proc Twenty-First Int Mach Tool Des Res Conf, London: Macmillan Education UK; 1981, 345–50. https://doi.org/10.1007/978-1-349-05861-7_45.
- 7. Philip, J.T., Mathew, J., Kuriachen, B. Transition from EDM to PMEDM – impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: a review. Journal of Manufacturing Processes 2021; 64: 1105–42. https://doi.org/10.1016/j.jmapro.2021.01.056.
- 8. Long, B.T., Phan, N.H., Cuong, N., Jatti, V.S. Optimization of PMEDM process parameter for maximizing material removal rate by Taguchi’s method. International Journal of Advanced Manufacturing Technology 2016; 87: 1929–39. https://doi.org/10.1007/s00170-016-8586-4.
- 9. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S. Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zr β‑titanium alloy. Materials and Manufacturing Processes 2017; 32: 274–85. https://doi.org/10.1080/10426914.2016.1198018.
- 10. Sahu, S.K., Jadam, T., Datta, S., Nandi, G. Effect of using SiC powder‑added dielectric media during electro‑discharge machining of Inconel 718 superalloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018; 40: 330. https://doi.org/10.1007/s40430-018-1257-7.
- 11. Toshimitsu, R., Okada, A., Kitada, R., Okamoto, Y. Improvement in surface characteristics by EDM with chromium powder mixed fluid. Procedia CIRP 2016; 42: 231–5. https://doi.org/10.1016/j.procir.2016.02.277.
- 12. Al‑Amin, M., Abdul‑Rani, A.M., Ahmed, R., Shahid, M.U., Zohura, F.T., Rani, M.D.B.A. Multi‑objective optimization of process variables for MWCNT‑added electro‑discharge machining of 316L steel. International Journal of Advanced Manufacturing Technology 2021; 115: 179–98. https://doi.org/10.1007/s00170-021-07169-1.
- 13. Amorim, F.L., Dalcin, V.A., Soares, P., Mendes, L.A. Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. International Journal of Advanced Manufacturing Technology 2017; 91: 341–50. https://doi.org/10.1007/s00170-016-9678-x.
- 14. Hossain, M.M., Karim, M.S.B.A., Hoong, W.Y., Shukor, M.H.B.A., Talip, M.S.B.A. Feasibility of using CeO₂/water dielectric nanofluid in electrical discharge machining (EDM). Arab Journal of Science and Engineering 2020; 45: 5435–5445. https://doi.org/10.1007/s13369-020-04404-x.
- 15. Shard, A., Shikha, D., Gupta, V., Garg, M.P. Effect of B₄C abrasive mixed into dielectric fluid on electrical discharge machining. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018; 40: 554. https://doi.org/10.1007/s40430-018-1474-0.
- 16. Talla, G., Gangopadhyay, S., Biswas, C.K. Influence of graphite powder mixed EDM on the surface integrity characteristics of Inconel 625. Particulate Science and Technology 2017; 35: 219–26. https://doi.org/10.1080/02726351.2016.1150371.
- 17. Bui, V.D., Mwangi, J.W., Meinshausen, A.-K., Mueller, A.J., Bertrand, J., Schubert, A. Antibacterial coating of Ti‑6Al‑4V surfaces using silver nanopowder mixed electrical discharge machining. Surface Coatings Technology 2020; 383: 125254. https://doi.org/10.1016/j.surfcoat.2019.125254.
- 18. Tao Le, V. The evaluation of machining performances and recast layer properties of AISI H13 steel processed by tungsten carbide powder mixed EDM process in the semi‑finishing process. Machining Science and Technology 2022; 26: 428–59. https://doi.org/10.1080/10910344.2022.2129983.
- 19. Le, V.T. An investigation on machined performance and recast layer properties of AISI H13 steel by Powder Mixed-EDM in fine-finishing process. Materials Chemistry and Physics 2022; 276: 125362. https://doi.org/10.1016/j.matchemphys.2021.125362.
- 20. Anh Tung, L., Pi, V.N., Lien, V.T., Thi Hong, T., Hung, L.X., Tien Long, B. Optimization of dressing parameters of grinding wheel for 9CrSi tool steel using the Taguchi method with grey relational analysis. IOP Conference Series: Materials Science and Engineering 2019; 635: 012030. https://doi.org/10.1088/1757-899X/635/1/012030.
- 21. Le, T.S., Tran, M.D., Nguyen, D.B., Nguyen, V.C. An investigation on effect of characteristics of the peanut oil MQL on tool life in hard turning 9CrSi steel. International Journal of Machining and Machinability of Materials 2013; 13: 428. https://doi.org/10.1504/IJMMM.2013.054275.
- 22. Thanh-Huan, N., Duc-Toan, N. Experimental researches of turning hardened 9CrSi alloy tool steel with laser-assisted machining. Arab Journal of Science and Engineering 2021; 46: 11725–38. https://doi.org/10.1007/s13369-021-05685-6.
- 23. Le, V.T. Influence of processing parameters on surface properties of SKD61 steel processed by powder mixed electrical discharge machining. Journal of Materials Engineering and Performance 2021; 30: 3003–23. https://doi.org/10.1007/s11665-021-05584-9.
- 24. Le, V.-T., Nguyen, T.H.M., Hoang, T.D., Nguyen, V.S. Novel insights for machining and metallurgical surface features of the heat treatment and non‑heat treatment X40CrMoV51 tool steel by powder-added EDM process. International Journal of Advanced Manufacturing Technology 2025; 137: 4063–88. https://doi.org/10.1007/s00170-025-15396-z.
- 25. Le, V.T., Hoang, L., Ghazali, M.F., Le, V.T., Do, M.T., Nguyen, T.T., et al. Optimization and comparison of machining characteristics of SKD61 steel in powder-mixed EDM process by TOPSIS and desirability approach. International Journal of Advanced Manufacturing Technology 2024; 130: 403–24. https://doi.org/10.1007/s00170-023-12680-8.
- 26. Kumar, S., Goud, M., Suri, N.M. Grey relational analysis‑based multi‑response optimization of magnetic‑field‑assisted powder‑mixed electric discharge machining of Inconel 706. Arab Journal of Science and Engineering 2022; 47: 8315–39. https://doi.org/10.1007/s13369-021-06204-3.
- 27. Tebassi, H., Yallese, M.A., Belhadi, S. Optimization and machinability assessment at the optimal solutions across Taguchi OA, GRA, and BBD: An overall view. Arab Journal of Science and Engineering 2023; 48: 12455–83. https://doi.org/10.1007/s13369-023-07825-6.
- 28. Wang, X. Application of grey relation analysis theory to choose high reliability of the network node. Journal of Physics: Conference Series 2019; 1237: 032056. https://doi.org/10.1088/1742-6596/1237/3/032056.
- 29. Acherjee, B., Misra, D., Bose, D., Acharyya, S. Optimal process design for laser transmission welding of acrylics using desirability function analysis and overlay contour plots. International Journal of Manufacturing Research 2011; 6: 49. https://doi.org/10.1504/IJMR.2011.037913.
- 30. Jain, S., Parashar, V. Critical review on the impact of EDM process on biomedical materials. Materials and Manufacturing Processes 2021; 36: 1701–24. https://doi.org/10.1080/10426914.2021.1942907.
- 31. Xie, B., Hou, J., Dong, B., Xu, C., Yao, R., Zhang, Y. Thermal model of crater formation process in electrical discharge machining. Case Studies in Thermal Engineering 2024; 56: 104303. https://doi.org/10.1016/j.csite.2024.104303.
- 32. Rezaei Ashtiani, H.R., Hojati, F. The influences of spark energy density on the electrical discharge machining (EDM). Advanced Materials Processing Technology 2022; 8: 3165–81. https://doi.org/10.1080/2374068X.2021.1945304.
- 33. Ekmekci, B., Yaşar, H., Ekmekci, N. A discharge separation model for powder mixed electrical discharge machining. Journal of Manufacturing Science and Engineering 2016; 138: 1–9. https://doi.org/10.1115/1.4033042.
- 34. Le, V.T., Banh, T.L., Do, T.L., Nguyen, T.H. Tool rotary assisted EDM processing of SKD61 steel: Influence and optimizing of main process parameters and surface roughness. International Conference on Advanced Mechanical Engineering and Automation for Sustainable Development 2021: 316–22. https://doi.org/10.1007/978-3-030-99666-6_48.
- 35. Tyagi, R., Das, A.K., Mandal, A. Electrical discharge coating using WS₂ and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribology International 2018; 120: 80–92. https://doi.org/10.1016/j.triboint.2017.12.023.
- 36. Behera, A., Kumar Sahoo, A., Sankar Mahapatra, S. Experimental investigation of plain and nano-graphene oxide mixed dielectric for sustainable EDM of Nimonic alloy using Cu and Brass electrode: A comparative study. Measurement 2025; 241: 115659. https://doi.org/10.1016/j.measurement.2024.115659.
- 37. Tao Le, V. The influence of additive powder on machinability and surface integrity of SKD61 steel by EDM process. Materials and Manufacturing Processes 2021; 36: 1084–98. https://doi.org/10.1080/10426914.2021.1885710.
- 38. Wang, X., Li, C., Guo, H., Ding, S. Electrical discharge machining of polycrystalline diamond: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2023; 237: 1611–27. https://doi.org/10.1177/09544054221136511.
- 39. Le, V.T. The role of electrical parameters in adding powder influences the surface properties of SKD61 steel in EDM process. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021; 43: 120. https://doi.org/10.1007/s40430-021-02844-6.
- 40. Dubey, V., Sharma, A.K., Singh, B. Optimization of machining parameters in chromium-additive mixed electrical discharge machining of the AA7075/5%B₄C composite. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2022; 236: 104–13. https://doi.org/10.1177/09544089211031755.
- 41. Lee, S.H., Li, X. Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. Journal of Materials Processing Technology 2003; 139: 315–21. https://doi.org/10.1016/S0924-0136(03)00547-8.
- 42. Davis, R., Singh, A., Debnath, K., Sabino, R.M., Popat, K., da Silva, L.R.R., et al. Surface modification of medical-grade Ni₅₅.₆Ti₄₄.₄ alloy via enhanced machining characteristics of Zn powder mixed μ‑EDM. Surface Coatings Technology 2021; 425: 127725. https://doi.org/10.1016/j.surfcoat.2021.127725.
- 43. Mwangi, J.W., Bui, V.D., Thüsing, K., Hahn, S., Wagner, M.F.X., Schubert, A. Characterization of the arcing phenomenon in micro‑EDM and its effect on key mechanical properties of medical‑grade Nitinol. Journal of Materials Processing Technology 2020; 275: 116334. https://doi.org/10.1016/j.jmatprotec.2019.116334.
- 44. Azwinur, A., Kusuma, M.H., Usman, U., Dharma, S., Akhyar, A. Effects of heat input on mechanical properties, microstructures and thermal conductivity of copper alloy in gas tungsten arc welding technology. Advances in Science and Technology Research Journal 2025; 19: 316–29. https://doi.org/10.12913/22998624/203367.
- 45. Frutania, K., Saneto, A., Takezawa, H., Mohri, N., Miyake, H. Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precision Engineering 2001; 25: 138–44. https://doi.org/10.1016/S0141-6359(00)00068-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40a4e1b5-2a06-4208-800e-0ff8d7ebe9ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.