PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic markers use for monitoring of environmental pollution caused by fracturing fluids during shale gas exploitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie markerów magnetycznych do monitoringu zanieczyszczenia środowiska płynem szczelinującym podczas eksploatacji gazu łupkowego
Języki publikacji
EN
Abstrakty
EN
Magnetic materials may be added to the fracturing fluid, as the magnetic marker allowing to determine the range and efficiency of hydraulic fracturing. The application of appropriate magnetic markers can significantly improve the efficiency of shale gas extraction. There are, however, other important benefits of magnetic markers use, involving the monitoring of environmental pollution, during gas extraction with above mentioned method. However, with the rapid increase in amount of shale gas extracted using hydraulic fracturing method, there are also credible reports on the possibility of groundwater or the soil pollution. Thus, it is necessary to apply enhanced methods, to effectively detect any fracturing fluid leakage. The use of magnetic markers gives such opportunities. In case of leakage and consequently the fracturing fluid pollution, magnetic markers are placed into the soil environment. The presence of pollutants in soil can be detected using a number of standard chemical methods, but magnetometric ones, which are much faster and cheaper deserve special attention, because they enable in-situ detection of the magnetic marker in fracturing fluid leakage. This article discusses the above-mentioned issues based on the literature review, the knowledge and experience of the authors.
PL
Materiały magnetyczne dodawane do płynu szczelinującego jako marker magnetyczny, mogą w procesie szczelinowania hydraulicznego pełnić dodatkowe funkcje, oprócz umożliwienia określenia zasięgu szczelin w skałach złożowych wytwarzanych w tym procesie. Ocenia się, że zastosowanie odpowiednich markerów magnetycznych może znacznie poprawić wydajność wydobycia gazu łupkowego. Istnieją jednakże inne, istotne korzyści z zastosowania markerów magnetycznych, polegające na monitoringu zanieczyszczenia środowiska w trakcie wydobycia gazu łupkowego omawianą metodą. Niestety, wraz z gwałtownym wzrostem ilości wydobywanego gazu łupkowego, z zastosowaniem metody szczelinowania hydraulicznego, pojawiły się również wiarygodne doniesienia o możliwości zanieczyszczenia wód podziemnych lub gleby, w trakcie tego procesu. Konieczne jest więc zastosowanie skutecznych metod wykrywania potencjalnego wycieku płynu szczelinującego. Stosowanie markerów magnetycznych daje takie możliwości. W przypadku wystąpienia wycieku i w konsekwencji zanieczyszczenia środowiska płynem szczelinującym, również markery magnetyczne zostają wprowadzone do środowiska gruntowego. Obecność zanieczyszczeń w gruncie można stwierdzić za pomocą wielu standardowych metod chemicznych. Ze względu na znaczną czasochłonność i kosztochłonność bezpośrednich metod laboratoryjnych, na uwagę zasługują znacznie szybsze i tańsze metody magnetometryczne, które pozwalają na łatwe, in-situ, wykrycie markera magnetycznego w ewentualnym wycieku. W artykule omówione zostaną wspomniane powyżej zagadnienia na podstawie przeglądu literaturowego oraz wiedzy i doświadczenia autorów.
Twórcy
autor
  • Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, tel. 222345423
autor
  • Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw
Bibliografia
  • [1] Attendorn HG., Bowen R.: Radioactive and Stable Isotope Geology, Chapman & Hall, London, 1997.
  • [2] Baranzelli C., Vandecasteele I., Barranco R.R., Rivero I.M., Pelletier N., Batelaan O., Lavalle C.: Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland, Energy Policy, 84, 2015, pp. 80-95.
  • [3] Barron A.R., Skala R.D., Coker C.E., Chatterjee, D.K., Xie Y.: Method of Manufacture and the Use of a Functional Proppant for Determination of Subterranean Fracture Geometries, Patent US 2009/0288820 A1, 2009.
  • [4] Barron A.R., Tour J., Busnaina A., Jung Y., Somu S., Kajn M., Potter D., Resanco D., Ullo J.:Big things in small packages, Oilfield Review. 22 (3), 2010, pp. 38-49.
  • [5] Barron A.R., Potter D.K., Maguire-Boyle S.J., Pena E., Morrow L.: Methods, Apparatus, and Sensors for Publication Classification Tracing Frac Fluids in Mineral Formations, Production Waters, and the Environment Using Magnetic Particles, Patent US 2014/0357534 A1, 2014.
  • [6] Bicerano J.: Proppants Coated with Piezoelectric or Magnetostrictive Materials, or by Mixtures or Combinations Thereof, to Enable Their Tracking in a Downhole Environment, Patent no US 2010/0038083 A1, 2010.
  • [7] Bogacki J., Zawadzki J.: The influence of ferrite particle size on the quality of the magnetic marker in shale gas hydraulic fracturing, Systemy wspomagania w inżynieri iprodukcji. Review of problems and solutions, 3 (15), 2016, pp. 25-33.
  • [8] Borglin S.E., Moridis G.J., Becker A.: Magnetic Detection of Ferrofluid Injection Zones. Lawrence Berkley National Laboratory, Berkley, 1998.
  • [9] Byerlee, J.D., Johnston, M.J.S.: A magnetic method for determining the geometry of hydraulic fractures, Pageoph 114, 1976, pp. 425-433.
  • [10] Chen S.: Precision Making of Subsurface Locations, Patent no US 2012/0234533 A1, 2012.
  • [11] Cocuzza M., Pirri C., Rocca V., Verga F.: Current and future nanotech applications in the oil industry. American Journal of Applied Sciences. 9 (6), 2012, pp. 784-793.
  • [12] Curtis J.B.: Fractured shale-gas systems, AAPG Bulletin, 86, 2002, pp. 1921-1938.
  • [13] Ersoz H.V.: Use of Magnetic Liquids for Imaging and Mapping Porous Subterranean Formations, Patent US 2014/0041862 A1, 2014.
  • [14] Fabijańczyk P., Zawadzki J., Magiera T., Szuszkiewicz M.: A methodology of integration of magnetometric and geochemical soil contamination measurements, Geoderma 277, 2016, pp. 51-60.
  • [15] Ferronato M., Gambolati G., Teatini P., Baù D.: Radioactive marker measurements in heterogeneous reservoirs: numerical study, International Journal of Geomechanics. 79, 2004, pp. 79-92.
  • [16] Frycz M.: Wpływ temperatury i stężenia cząstek magnetycznych Fe3O4 na wartość gęstości ferrocieczy wykonanej na bazie oleju silnikowego, Zeszyty Naukowe Akademii Morskiej w Gdyni, 64, 2010, pp. 51-58.
  • [17] Gandossi L.: An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production, Report EUR 26347 EN, Institute for Energy and Transport, European Commission, 2013.
  • [18] Giakisikli G., Anthemidis A.N.: Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review, Analytica Chimica Acta, 789, 2013, pp. 1-16.
  • [19] Guire de E.: Shale gas recovery—Engineering a big business, American Ceramic Society Bulletin, 93 (1), 2014, pp. 27.
  • [20] Henley D.,: Process for single system electrocoagulation, magnetic, cavitation and flocculation (EMC/F) treatment of water and wastewater, Patent US 2013/0161262 A1, 2013.
  • [21] Huh C., Nizamidin N., Pope G.A., Milner T.E., Wang B.: Hydrophobic Paramagnetic Nanoparticles as Intelligent Crude Oil Tracers, Patent WO 2014123672A1, 2014.
  • [22] Javadpour F., Fisher D., Unsworth M.,: Nanoscale Gas Flow in Shale Gas Sediments, Journal Of Canadian Petroleum Technology, 46, 2007, pp. 55-61.
  • [23] Konieczyńska M., Woźnicka M., Antolak O., Janica R., Lichtarski G., Nidental M., Otwinowski J., Starzycka A., Stec B., Grzegorz W.: Badania Aspektów Środowiskowych Procesu Szczelinowania Hydraulicznego Wykonanego W Otworze Łebień LE-2H, Państwowy Instytut Geologiczny, Warszawa, 2011.
  • [24] Liang F., Sayed M., Al-Muntasheri G.A., Chang F.F., Li L.: A comprehensive review on proppant technologies, Petroleum 2015, pp. 1-14.
  • [25] Magiera T., Zawadzki J.: Magnetometria glebowa – nowe narzędzie geofizyczne do oceny zanieczyszczenia gleb, Geofizyka. Biuletyn Informacyjny PBG, 2, 2006, pp. 74-90.
  • [26] Maramatsu S., Takasugi S., Osato K.,: Three-dimensional Detection System for Detecting Fractures and Their Distribution in the Earth Crust Utilizing an Artificial Magnetic Field and Magnetic Particle Tracer, US Patent No. 5151658, 1992.
  • [27] Meng Q.: Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA, Science if the Total Environment 515516, 2015, pp. 198-206.
  • [28] Meyer T.J.: Mapping and Monitoring of Hydraulic Fractures Using Vector Magnetometers, Patent US 2015/0268373 A1, 2015.
  • [29] Morrow L., Potter D.K., Barron A.R.: Detection of magnetic nanoparticles against proppant and shale reservoir rocks, Journal of Experimental Nanoscience. 10 (13), 2014, pp. 1028-1041.
  • [30] Munoz M., de Pedro Z.M., Casas J.A., Rodriguez, J.J.: Preparation of magnetitebased catalysts and their application in heterogeneous Fenton oxidation – A review, Applied Catalysis B: Environmental, 176-177, 2015, pp. 249-265.
  • [31] Nguyen, P.D., Weaver, J.D., Bartom, J.A.: Method of Tracking Fluids Produced from Various Zones in Subterranean Wells. Patent US 6,725,926 B2, 2004.
  • [32] Norena L.E., Wang J.A.: Advanced Catalytic Materials - Photocatalysis and Other Current Trends, InTech, DOI: 10.5772/60491, 2016.
  • [33] Pękala A., Głowienka E.: Badania korelacji pierwiastków śladowych w środowisku glebowo-roślinnym przy zastosowaniu metod GIS, Czasopismo Inżynierii Lądowej, Środowiska i Architektury – Journal of Civil Engineering, Environment and Architecture, JCEEA, 63 (2), 2016, pp. 209-219, DOI: 10.7862/rb.2016.123.
  • [34] Potter D.K., Barron A.R., Maguire-Boyle S.J., Orbaek A.W., Ali A., Harrison L.: Magnetic Particles for Determining Reservoir Parameters, PatentWO2011153339, 2011.
  • [35] Rogala A., Krzysiek J., Bernaciak M., Hupka J.:Non-aqueous fracturing technologies for shale gas recovery, Physicochemical Problems of Mineral Processing. 49 (1), 2013, pp. 313-322.
  • [36] Saaba B.: Potential Treatment Options for Hydraulic Fracturing Return Fluids: A Review, ChemBioEng Reviws. 1 (6), 2014, pp. 273-279.
  • [37] Strzyszcz Z.: Magnetic susceptibility of soils in the areas influenced by industrial emissions. [W]: R. Schulin (Ed.), Soil Monitoring. Monte Verita. Birkhäuser Verlag, Basel, 1993, pp. 255-269.
  • [38] Strzyszcz Z., MagieraT., Heller F.: The influence of industrial emissions on the magnetic susceptibility of soils in Upper Silesia, Studia Geophysica et Geodaetica. 40, 1996, pp. 276-286.
  • [39] Strzyszcz Z., Magiera T.: Heavy metal contamination and magnetic susceptibility in soils of southern Poland, Physics and Chemistry of the Earth. 23, 1998, pp. 1127-1131.
  • [40] Strzyszcz Z., Magiera T.: Chemical and mineralogical composition of some ferromagnetic minerals occurring in industrial dusts and contaminated soils, Mitteilungen der DeutschenBodenkundlischen Gesellschaft, Bd.96 (H.2), 2001a, pp. 697-698.
  • [41] Strzyszcz Z., Magiera T.: Magnetic susceptibility measurement on ombrothrophic peat in monitoring of industrial immision, Archives of Environmental Protection. 27, 2001b, pp. 141-167.
  • [42] United States House of Representatives Committee on Energy and Commerce Minority Staff, Chemicals Used in Hydraulic Fracturing, 2011.
  • [43] Urbanik M., Tchórzewska-Cieślak B.: Ecological aspects of the natural gas use, Czasopismo Inżynierii Lądowej, Środowiska i Architektury – Journal of Civil Engineering, Environment and Architecture, JCEEA, 62 (1), 2015, pp. 409-417, DOI: 10.7862/rb.2015.29.
  • [44] US EPA Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, US Environmental Protection Agency, Office of Research and Development, Washington, D.C, 2011.
  • [45] Wilt M., Sen P.,: Electromagnetic Imaging of Proppant in Inducted Fracturing, Patent US 2014/0374091A1, 2014.
  • [46] Yuan J., Luo D., Feng L.: A review of the technical and economic evaluation techniques for shale gas development, Applied Energy 148, 2015, pp. 49-65.
  • [47] Zawadzki J.: Metody geostatystyczne dla kierunków przyrodniczych i technicznych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2011.
  • [48] Zawadzki J.: Wykorzystanie metod geostatycznych w badaniach środowiska przyrodniczego, Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska, 3-134, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005.
  • [49] Zawadzki J., Bogacki J.: Rozwój technologii magnetycznych w wydobyciu gazu łupkowego, Systemy wspomagania w inżynierii produkcji. Górnictwo, Perspektywy i zagrożenia 1 (13), 2016a, pp. 25-37.
  • [50] Zawadzki J., Bogacki J.: Smart magnetic markers use in hydraulic fracturing, Chemosphere, 162, 2016b, pp. 23-30.
  • [51] Zawadzki J., Bogacki J.: On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining, Geophysical Research Abstracts. 18. 2016c, EGU2016-6749-1.
  • [52] Zawadzki J., Fabijańczyk P., Magiera T., Rachwał M.: Geostatistical microscale study of magnetic susceptibility in soil profile and magnetic indicators of potential soil pollution. Water, Air, & Soil Pollution 226 (5), 2015, pp. 1-8.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40a1e37b-a7b2-4c9a-a192-f38f369fbb76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.