PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Overview of Data Mining and Process Mining Applications in Underground Mining

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd zastosowań technik drążenia danych i procesów w górnictwie podziemnym
Języki publikacji
EN
Abstrakty
EN
The underground mining process can be analysed with a data-oriented or process-oriented approach. The first of them is popular and wide known as data mining while the second is still not often used in the conditions of the mining companies. The aim of this paper is an overview of data mining and process mining applications in an underground mining domain and an investigation of the most popular analytic techniques used in the defined analytic perspectives (“Diagnostics and machinery”, “Geomechanics”, “Hazards”, “Mine planning and safety”). In the paper two research questions are formulated: RQ1: What are the most popular data mining/process mining tasks in the analysis of the underground mining process? and RQ2: What are the most popular data mining/process mining techniques applied in the multi-perspective analysis of the underground mining process? In the paper sixty--two published articles regarding to data mining tasks and analytic techniques in the mentioned domain have been analysed. The results show that predominatingly predictive tasks were formulated with regard to the analysed phenomena, with strong overrepresentation of classification task. The most frequent data mining algorithms is comprised of the following: artificial neural networks, decision trees, rule induction and regression. Only a few applications of process mining in analysis of the underground mining process have been found – they were briefly described in the paper.
PL
Celem artykułu jest przegląd zastosowań eksploracji danych (data mining) i procesów (process mining) w analizie procesu wydobywczego w kopalniach podziemnych oraz identyfikacja najpopularniejszych technik analizy danych w tym zakresie. W artykule sformułowano dwa pytania badawcze: P1: Jakie są najpopularniejsze zadania eksploracji danych/eksploracji procesów w analizie procesu wydobywczego w kopalniach podziemnych? oraz P2: Jakie są najpopularniejsze techniki eksploracji danych/eksploracji procesów stosowane w wielowymiarowej analizie procesu wydobywczego w kopalniach podziemnych? W artykule przeanalizowano sześćdziesiąt dwie opublikowane prace dotyczące eksploracji danych w ujęciu zdefiniowanych perspektyw analitycznych (“Diagnostyka i maszyny”, “Geomechanika”, “Zagrożenia”, “Projektowanie kopalń i bezpieczeństwo”). Wyniki pokazują, że w odniesieniu do analizowanych zjawisk formułowano głównie zadania predykcyjne, z silną nadreprezentacją zadania klasyfikacji. Do najczęściej wykorzystywanych technik eksploracji danych należą: sztuczne sieci neuronowe, drzewa decyzyjne, indukcja reguł i regresja. Eksploracja procesów w analizie procesu wydobywczego w kopalniach podziemnych została opisana tylko w kilku artykułach, które pokrótce omówiono.
Rocznik
Strony
301--314
Opis fizyczny
Bibliogr. 72 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Cracow, Poland
Bibliografia
  • 1. van der Aalst, W.M.P. (2016): Process Mining: Data Science in Action. Springer-Verlag, Berlin.
  • 2. Al-Chalabi, H. et al. (2014). Economic lifetime prediction of a mining drilling machine using an artificial neural network. International Journal of Mining, Reclamation and Environment, vol. 28(5), pp. 311-322. doi.org/10.1080/1 7480930.2014.942519
  • 3. Augusto, A. et al. (2019). Automated Discovery of Process Models from Event Logs: Review and Benchmark. IEEE Trans. Knowl. Data Eng., vol. 31(4), pp. 686-705. arXiv:1705.02288
  • 4. Bodlak, M., Kudełko J. and Zibrow, A. (2018). Machine Learning in predicting the extent of gas and rock outburst, E3S Web Conf., vol. 71. doi.org/10.1051/e3sconf/20187100009
  • 5. Bongers D.R. and Gurgenci H. (2008). Fault Detection and Identification for Longwall Machinery Using SCADA Data. In: Complex System Maintenance Handbook. Springer Series in Reliability Engineering. Springer, London. doi.org/10.1007/978-1-84800-011-7_25
  • 6. Borowski, M. and Szlązak, N. (2006). Prognozowanie wydzielania metanu do wyrobisk ścianowych w kopalniach węgla kamiennego z wykorzystaniem sieci neuronowych. Materiały 4 Szkoły Aerologii Górniczej, Kraków.
  • 7. Boullé, M. (2016). Predicting dangerous seismic events in coal mines under distribution drift. In M. Ganzha, L.A. Maciaszek, M. Paprzycki (Eds.), Proceedings of FedCSIS 2016, pp. 227–230.
  • 8. Brzychczy E. and Trzcionkowska, A. (2019). Process-oriented approach for analysis of sensor data from longwall monitoring system. In: Intelligent Systems in Production Engineering and Maintenance [ISPEM 2018], eds. Anna Burduk [et al.]. Advances in Intelligent Systems and Computing. Springer Nature Switzerland AG, Cham, pp. 611- 621. doi.org/10.1007/978-3-319-97490-3_58
  • 9. Brzychczy, E. and Trzcionkowska, A. (2017). New possibilities for process analysis in an underground mine. Zeszyty Naukowe Politechniki Śląskiej. Organizacja i Zarządzanie, z. 111: Management in mining production, economic, social and technical perspectives and experiences, s. 13-25. doi.org/10.29119/1641-3466.2017.111.2
  • 10. Brzychczy, E., and Trzcionkowska, A. (2018). Creation of an event log from a low-level machinery monitoring system for process mining purposes. Intelligent Data Engineering and Automated Learning IDEAL 2018. Eds. Hujun Yin, [et al.]. Cham: Springer Nature Switzerland AG, Lecture Notes in Computer Science 11315, pp 54-63. doi.org/10.1007/978-3-030-03496-2_7
  • 11. Brzychczy, E., Kęsek, M., Napieraj, A. and Magda R. (2017). An expert system for underground coal mine planning. Mineral Resources Management, vol. 33(2), pp. 113-127. doi.org/10.1515/gospo-2017-0015
  • 12. Carmona, J., van Dongen, B., Solti A. and Weidlich, M. (2018). Conformance Checking: Relating Processes and Models. Springer International Publishing. doi.org/10.1007/978-3-319-99414-7
  • 13. Chatterjee, S. and Bandopadhyay, S. (2012). Reliability estimation using a genetic algorithm-based artificial neural network: an application to a load-haul-dump machine. Expert Syst Appl, vol. 39(12), pp.10943–10951. doi. org/10.1016/j.eswa.2012.03.030
  • 14. Cheng, J. and Yang, S. (2012). Data mining applications in evaluating mine ventilation system, Safety Science, vol. 50 (4), pp. 918-922. doi.org/10.1016/j.ssci.2011.08.003
  • 15. Deb, D., Kumar, A. and Rosha, R.P.S. (2006). Forecasting shield pressures at a longwall face using artificial neural networks. Geotech Geol Eng, vol. 24, pp. 1021-1037. doi.org/10.1007/s10706-005-4430-6
  • 16. Duany, A. A., Lilford, E. and Topal E. (2018). Application of predictive data mining to create mine plan flexibility in the face of geological uncertainty, Resources Policy, vol. 55, pp 62-79. doi.org/10.1016/j.resourpol.2017.10.016
  • 17. Fuksa, D. et al. (2017). An evaluation of practical applicability of multi-assortment production break-even analysis based on mining companies. Archives of Mining Sciences, vol. 62(1), pp. 33-44. doi.org/10.1515/amsc-2017-0003
  • 18. Gawlik, L. (2008). Construction and validation of econometric model of linear dependence between costs and coal production level. Mineral Resources Management, vol. 24(1), pp. 27-44.
  • 19. Gernand, J.M. (2014). Machine Learning Classification Models for More Effective Mine Safety Inspections. ASME International Mechanical Engineering Congress and Exposition, Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures. doi.org/10.1115/ IMECE2014-38709
  • 20. Grzegorowski, M. and Stawicki, S. (2015). Window-based feature engineering for prediction of methane threats in coal mines. In: Y. Yao, Q. Hu, H. Yu, J.W. Grzymala-Busse (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing - 15th International Conference, RSFDGrC 2015, LNCS, vol. 9437, Springer, pp. 452–463. doi. org/10.1007/978-3-319-25783-9_40
  • 21. Hargrave, Ch., James, C. and Ralston, J. (2017). Infrastructure-Based Localisation of Automated Coal Mining Equipment. International Journal of Coal Science & Technology. vol. 4(3), pp. 252-261. doi.org/10.1007/s40789- 017-0180-3
  • 22. He, M. et al. (2015). Rockburst laboratory tests database - Application of data mining techniques. Eng. Geol., vol. 185, pp. 116–130. doi.org/10.1016/j.enggeo.2014.12.008
  • 23. He, Z., Wu, Q., Wen, L., and Fu, G. (2019). A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines. Safety Science, vol. 111, pp. 154-166. doi.org/10.1016/j. ssci.2018.07.006
  • 24. Huang, L. et al. (2018). Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning. Tunnel. and Underground Space Technology, vol. 81, pp. 265-276. doi. org/10.1016/j.tust.2018.07.006
  • 25. Hussain, S. et al. (2016). Comparative Analysis of Rock Mass Rating Prediction Using Different Inductive Modeling Techniques. Intl. Journal of Mining Engineering and Mineral Processing, vol. 5(1), pp. 9-15. doi.org/10.5923/j. mining.20160501.02
  • 26. Iannacone, J.P., et al. (2015). Characterization of Longwall Mining Induced Subsidence by Means of Automated Analysis of InSAR Time-Series. In: Lollino G., Manconi A., Guzzetti F., Culshaw M., Bobrowsky P., Luino F. (eds). Engineering Geology for Society and Territory – vol. 5. Springer, Cham. doi.org/10.1007/978-3-319-09048-1_187
  • 27. Jakubowski, J. and Tajduś, A. (2014). Predictive regression models of monthly seismic energy emissions induced by longwall mining, Archives of Mining Sciences, vol. 59(3), pp. 705-720. doi.org/10.2478/amsc-2014-0049
  • 28. Jamróz, D. and Niedoba, T. (2015). Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types. Archives of Mining Sciences, vol. 60 (1), pp. 39–50. doi.org/10.1515/amsc-2015-0003
  • 29. Jang, H., and Topal, E. (2014). A review of soft computing technology applications in several mining problems. Applied Soft Computing, vol. 22, pp. 638-651. doi.org/10.1016/j.asoc.2014.05.019
  • 30. Janusz, A. et al. (2017). Predicting seismic events in coal mines based on underground sensor measurements. Eng. Appl. of Art. Int., vol. 64, pp. 83–94. doi.org/10.1016/j.engappai.2017.06.002
  • 31. Javadi, M., Saeedi G. and Shahriar, K. (2017). Fuzzy Bayesian Network Model for Roof Fall Risk Analysis in Underground Coal Mines. Journal of Applied Sciences, vol. 17, pp. 103-115. doi.org/10.3923/jas.2017.103.115
  • 32. Jedliński, Ł. and Gajewski, J. (2019). Optimal selection of signal features in the diagnostics of mining head tools condition, Tunnelling and Underground Space Technology, vol. 84, pp. 451-460. doi.org/10.1016/j.tust.2018.11.042
  • 33. Jonek-Kowalska, I. and Turek, M. (2017). Dependence of Total Production Costs on Production and Infrastructure Parameters in the Polish Hard Coal Mining Industry. Energies vol. 10, pp. 1480.
  • 34. Kabiesz, et al. (2013). Application of rule-based models for seismic hazard prediction in coal mines. Acta Montan. Slovaca, vol 18 (3), pp. 262–277.
  • 35. Kashnikov, A., Levin, L. (2017). Applying machine learning techniques to mine ventilation control systems. IEEE International Conference on Soft Computing and Measurements (SCM). doi.org/10.1109/SCM.2017.7970595
  • 36. Kesek, M. (2017). Visual Basic as a Tool for Monitoring and Analyzing Machines. Journal of the Polish Mineral Engineering Society, vol. 18(2), pp. 195-200.
  • 37. Kopacz, M. (2015). The impact assessment of quality parameters of coal and waste rock on the value of mining investment projects - hard coal deposits. Mineral Resources Management, vol. 31(4), pp. 161-188. doi.org/10.1515/ gospo-2015-0037
  • 38. Kozielski, M., Matyszok, P., Sikora, M. and Wróbel Ł. (2018). Decision Rule Learning from Stream of Measurements - A Case Study in Methane Hazard Forecasting in Coal Mines. In: Gruca A., Czachórski T., Harezlak K., Kozielski S., Piotrowska A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. doi.org/10.1007/978-3-319-67792-7_30
  • 39. Krauze, E., (2009). Use sets classification and systematization methods for methane and fire hazards assessment in mines till year 2020 prospects. Research Reports Mining and Environment, vol. 1, p.15 (in Polish)
  • 40. Krzemień, A., Riesgo Fernández, P., Suárez Sánchez, A. and Sánchez Lasheras, F. (2015). Forecasting European thermal coal spot prices. Journal of Sustainable Mining, vol. 14(4), pp. 203-210. doi.org/10.1016/j.jsm.2016.04.002
  • 41. Kucharczyk, D., Wyłomańska, A. and Zimroz, R. (2017). Structural break detection method based on the Adaptive Regression Splines technique. Physica A: Statistical Mechanics and its Applications, vol. 471, pp. 499-511. arX- iv:1605.08667
  • 42. Kurach, K. and Pawlowski, K. (2016). Predicting dangerous seismic activity with recurrent neural networks. In: M. Ganzha, L.A. Maciaszek, M. Paprzycki (Eds.), Proceedings of the FedCSIS 2016, pp. 239–243. doi.org/10.15439/2016F134
  • 43. Larose, D.T. and Larose, C.D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining. Wiley Series on Methods and Applications in Data Mining, Wiley.
  • 44. Lee, S. and Park, I (2013). Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines, J. of Environ. Manag., vol. 127, pp. 166-176. doi.org/10.1016/j.jenvman.2013.04.010
  • 45. Lei, Ch. et al. (2018). A random forest approach for predicting coal spontaneous combustion, Fuel, vol. 223, pp. 63- 73. doi.org/10.1016/j.fuel.2018.03.005
  • 46. Lei, Ch. et al. (2019) A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob, Fuel, vol. 239, pp. 297-311. doi.org/10.1016/j.fuel.2018.11.006
  • 47. Leśniak, A. and Isakow, Z. (2009). Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland. Int. J. Rock Mech. Min. Sci., vol. 46 (5), pp. 918–928.
  • 48. Li, N. and Jimenez, R. (2018). A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards, vol. 90(1), pp. 197-215. doi.org/10.1007/s11069-017-3044-7
  • 49. Li, P., Tan, Z., Yan, L. and Deng, K. (2011). Time series prediction of mining subsidence based on a SVM. Mining Science and Technology (China), vol. 21(4), pp. 557-562. doi.org/10.1016/j.mstc.2011.02.025
  • 50. Mahdevari, S., Shahriar, K., Sharifzadeh, M. and Tannant, D. D. (2017). Stability prediction of gate roadways in longwall mining using artificial neural networks. Neural Comput. Appl. vol. 28(11), pp. 3537-3555. doi. org/10.1007/s00521-016-2263-2
  • 51. Manowska, A. (2015). The method of assessing rock bursting hazard in mining. Management Systems in Production Engineering. vol. 18(2), pp. 88-93. doi.org/10.12914/MSPE-07-02-2015
  • 52. Michalak, M., Sikora, B. and Sobczyk J. (2016). Diagnostic Model for Longwall Conveyor Engines. In: Gruca A., Brachman A., Kozielski S., Czachórski T. (eds). Man–Machine Interac-tions 4. Advances in Intelligent Systems and Computing, vol. 391. Springer, Cham. doi.org/10.1007/978-3-319-23437-3_37
  • 53. Michalak, M., Sikora, B. and Sobczyk, J. (2015). Correlation and association analysis in wall conveyor engines diagnosis. Studia Informatica, vol. 36(3), pp. 43-60. doi.org/10.21936/si2015_v36.n3.737
  • 54. Moczulski, W. et al. (2016). A new decision support tool for fault diagnosis, hazard prediction and analysis in mining industry - a case study. In: 24th World Mining Congress Proceedings, pp. 38–48.
  • 55. Niedoba, T. and Ranosz, R. (2016). Incomes and Share Prices for Mining Companies in the Context of Raw Materials Prices. Journal of the Polish Mineral Engineering Society, vol.1, pp. 7-14.
  • 56. Özgen Karacan, C. (2008). Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks. International Journal of Coal Geology, vol. 73(3–4), pp. 371-387. doi. org/10.1016/j.coal.2007.09.003
  • 57. Özgen Karacan, C. and Goodman, G.V.R. (2012). A CART technique to adjust production from longwall coal operations under ventilation constraints. Safety Science, vol. 50(3), pp. 510-522. doi.org/10.1016/j.ssci.2011.11.002
  • 58. Polak, M. et al. (2016). Time-varying group delay as a basis for clustering and segmentation of seismic signals. Journal of Vibroengineering, vol. 18(1), pp. 267-275.
  • 59. Qiao, W. et al. (2018). Using data mining techniques to analyze the influencing factor of unsafe behaviors in Chinese underground coal mines. Resources Policy, vol. 59, pp. 210-216. doi.org/10.1016/j.resourpol.2018.07.003
  • 60. Ribeiro e Sousa, L. et al. (2017). The Use of Data Mining Techniques in Rockburst Risk Assessment. Engineering, vol. 3(4), pp. 552-558. doi.org/10.1016/J.ENG.2017.04.002
  • 61. Sanmiquel L. et al. (2018). Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques. International Journal of Environmental Re-search and Public Health, vol. 15(3), pp. 462. doi.org/10.3390/ijerph15030462
  • 62. Sari, M. et al. (2009). Stochastic modeling of accident risks associated with an underground coal mine in Turkey, Safety Science, vol. 47(1), pp. 78-87. doi.org/10.1016/j.ssci.2007.12.004
  • 63. Sikora, M. and Sikora, B (2012). Improving prediction models applied in systems monitoring natural hazards and machinery. Int. J. Appl. Math. Comput. Sci., vol. 22 (2) pp. 477–491.
  • 64. Sikora, M. and Wróbel, L. (2010) Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines. Archives of Mining Sciences, vol. 55(1), pp. 91-114.
  • 65. Snopkowski, R., Napieraj, A. and Sukiennik, M. (2016). Method of the assessment of the influence of longwall effective working time onto obtained mining output. Archives of Mining Sciences, vol. 61(4), pp. 967–977. doi. org/10.1515/amsc-2016-0064
  • 66. Trzcionkowska, A., and Brzychczy, E. (2016). Wykorzystanie reguł asocjacyjnych do analizy pracy wybranego urządzenia w oddziale wydobywczym. Journal of the Polish Mineral Engi-neering Society, vol. 17(2), pp. 113-124.
  • 67. Trzcionkowska, A., and Brzychczy, E. (2018). Practical Aspects of Event Logs Creation for Industrial Process Modelling. Multidisciplinary Aspects of Production Engineering, 1(1), 77-83. doi.org/10.2478/mape-2018-0011
  • 68. Verma, A.K., Kishore, K., and Chatterjee, S. (2016). Prediction Model of Longwall Powered Support Capacity Using Field Monitored Data of a Longwall Panel and Uncertainty-Based Neural Network. S. Geotech Geol Eng, vol. 34(6), pp. 2033–2052. doi.org/10.1007/s10706-016-0081-z
  • 69. Wodecki, J., Stefaniak, P., Polak, M., and Zimroz R. (2018). Unsupervised Anomaly Detection for Conveyor Temperature SCADA Data. In: Timofiejczuk A., Chaari F., Zimroz R., Bartelmus W., Haddar M. (eds) Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Applied Condition Monitoring, vol 9. Springer, Cham. doi.org/10.1007/978-3-319-61927-9_34
  • 70. Wojtecki, Ł. and Konicek, P. (2016). Estimation of active rockburst prevention effectiveness during longwall mining under disadvantageous geological and mining conditions. Journal of Sustainable Mining, vol 15(1), pp. 1-7. doi. org/10.1016/j.jsm.2016.04.003
  • 71. Wyganowska, M. (2018). A Study of the Correlation between Age and the Number of Work Accidents in Mining Enterprises between 2003-2017. Journal of the Polish Mineral Engineering Society, vol. 20(2), pp. 81-86. doi. org/10.29227/IM-2018-02-10
  • 72. Zhou, J., et al. (2013). Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine. International Journal of Mining Science and Technology, vol. 23(5), pp. 701-707. doi.org/10.1016/j.ijmst.2013.08.014
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40a08125-efdb-4714-84b1-8f3b0f3c06b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.