Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Measured profiles, which are crucial to treatment planning system commissioning, are generally affected by averaging effect linked to the size of sensitive volume of detectors used. Such averaging leads to deviation from the true profiles in water even when small field detectors are employed. In order to have access to profile data which are free from the influence of the measuring device, a guidance is required, on when and how much correction is required for a detector in use. Material and methods: Profile correction factors were determined as the ratio between true profiles in water and associated measured profiles, both as a function of off-axis distance. The identical free air profile is used to simulate measurement and to generate ‘measured’ profiles at different depths in water. The MC generated profiles in water without the detector were taken as true profiles. Based on such MC generated profile results, detector specific correction factors were determined. Additionally, such factors were approximated by an analytical function using a fit procedure for the function parameters. Optimized parameters were systematically compiled depending on measuring conditions such as beam size, depths in water for detectors-pinpoint, pinpoint 3D, microSilicon and microDiamond. Results: The method to generate a common dataset of true profiles in water was successful. Also, measured and simulated profiles well agree for all measuring conditions. In addition, correction factors, as well as approximated correction functions were derived. Application of analytical correction functions to measured profiles for given conditions, well reproduced true profiles with the detector being absent. Conclusions: The MC method to derive correction factors for profile measurements is feasible for all detectors used in this study. Such correction factors can be well approximated by a simple analytical function. It is recommended that ionization chamber measured profiles generally need correction while solid state detectors measured profiles fairly approach the true profiles in water.
Rocznik
Tom
Strony
51--61
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Amity School of Applied Sciences, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
autor
- Amity School of Applied Sciences, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
autor
- Klinikum Oberberg, University of Cologne, Germany
autor
- German Cancer Research Center (DKFZ), Heidelberg, Germany
Bibliografia
- 1. Hanley, J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys, 2021;48:e830–e885. https://doi.org/10.1002/mp.14992
- 2. Das IJ, Cheng C, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35:4186-4215. https://doi.org/10.1118/1.2969070
- 3. Low DA, Moran, JM, Dempsey JF, et al. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38:1313-1338. https://doi.org/10.1118/1.3514120
- 4. Dieterich S, Cavedon C, Chuang CF, et al. Quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914-2936. https://doi.org/10.1118/1.3579139
- 5. International Atomic Energy Agency (2004). Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer, Technical Reports Series No. 430, IAEA, Vienna
- 6. Crop F, Reynaert N, Pittomvils G, et al. Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system. Phys Med Biol. 2007;52:3275-3290. https://doi.org/10.1088/0031-9155/52/11/022
- 7. International Atomic Energy Agency (2017). Dosimetry of Small Static Fields Used in External Beam Radiotherapy: An International Code of Practice for Reference and Relative Dose Determination. Technical Reports Series No. 483, IAEA, Vienna
- 8. Akino Y, Fujiwara M, Keita O, et al. Characterization of a microSilicon diode detector for small-field photon beam dosimetry. Journal of Radiation Research. 2020;61(3):410-418. https://doi.org/10.1093/jrr/rraa010
- 9. Weber C, Kranzer R, Weidner J, et al. Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors. Med Phys. 2020;47:3165-3173. https://doi.org/10.1002/mp.14149
- 10. Martens C, De Wagter C, De Neve W. The value of the pinpoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol. 2000;45(9):2519. https://doi.org/10.1088/0031-9155/45/9/306
- 11. Büsing I, Brant A, Lange T, et al. Experimental and Monte-Carlo characterization of the novel compact ionization chamber PTW 31023 for reference and relative dosimetry in high energy photon beams. Zeitschrift für Medizinische Physik. 2019;29:303-313. https://doi.org/10.1016/j.zemedi.2019.02.002
- 12. Kawata K, Ono T, Hirashima H, et al. Effect of angular dependence for small-field dosimetry using seven different detectors. Med. Phys. 2023;50:1274-1289. https://doi.org/10.1002/mp.16198
- 13. Scott AJD, Kumar S, Nahum AE, and Fenwick JD, Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol. 2012;57:4461. https://doi.org/10.1088/0031-9155/57/14/4461
- 14. Sotiropoulos M, Prezado Y . Radiation quality correction factors for improved dosimetry in preclinical minibeam radiotherapy. Med. Phys. 2022;49(10):6716-6727. https://doi.org/10.1002/mp.15838
- 15. Poudel S, Kulshreshtha A, Zakaria GA, Hartmann GH. Monte Carlo calculations of dose profiles with the ‘given profile” method and comparison with measurements. Rad Phys Chem. 2023;213:111236. https://doi.org/10.1016/j.radphyschem.2023.111236
- 16. PTW Dosimetry Detectors for Radiation Therapy. Accessed January 2022. https://www.ptwdosimetry.com/en/overview-pages/detectors-for-radiation-therapy/
- 17. Walters B, Kawrakow I, Rogers DWO. DOSXYXnrc Users’ Manual, NRCC Report PIRS 794revB, National Research Council of Canada, 2021
- 18. Hartmann GH, Zink K. Decomposition of the dose conversion factor based on fluence spectra of secondary charged particles: Application to lateral dose profiles in photon fields. Med Phys. 2018;45(9):4246-4256. https://doi.org/10.1002/mp.13081
- 19. Failing T, Hartmann GH, Wensley FW, et al. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. Zeitschrift für Medizinische Physik. 2022;32(4)417-427. https://doi.org/10.1016/j.zemedi.2022.04.003
- 20. Sechopoulos I, Rogers DWO, Bazalova-Carter M, et al. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the AAPM Research Committee Task Group 268. Med Phys. 2018;45:e1-e5. https://doi.org/10.1002/mp.12702
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4099e01e-0858-40fe-bdba-f397e86c3e17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.