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Abstract. The inverse scattering problem for half-line Schrödinger operators with potentials
from the Marchenko class is shown to be closely related to some Banach algebra of functions
on the line. In particular, it is proved that the topological conditions in the Marchenko
theorem can be replaced by the condition that the scattering function should belong to this
Banach algebra.
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1. INTRODUCTION

Let T be some class of self-adjoint operators T that are perturbations of a fixed
operator T0 with purely absolutely continuous spectrum. Assume that for every pair
(T, T0) with T ∈ T there exist wave operators; we denote by S(T, T0) the corresponding
scattering operator and consider the class of scattering operators W := {S(T, T0) |
T ∈ T }. One of the most important problems of the quantum scattering theory is
the one of efficient description of the class W.

This article starts a series of papers in which the authors plan to demonstrate that
each of the classical inverse scattering problems for Schrödinger, Dirac or Jacobi oper-
ators is closely related with some Banach algebra, in terms of which the corresponding
class W can easily be characterised.

In the present paper, we consider the class T := {Tq | q ∈ Q} of self-adjoint
Schrödinger operator Tq : L2(R+)→ L2(R+) generated by the differential expression

tq(f) := − d2

dx2 + q
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and the boundary condition
f(0) = 0

with the potential q belonging to the Marchenko class

Q := {q ∈ L1(R+, xdx) | Im q = 0}.

In the class T , the inverse scattering problem has a unique solution that was found
by V. A. Marchenko [1, Ch. 3]. In particular, he proved a theorem providing a complete
description of the scattering data for the operators T ∈ T . Conditions of this theorem
can be divided into algebraic and topological ones. The topological conditions involve
only the scattering function Sq, which is an equivalent substitute of the scattering
operator S(Tq, T0). Therefore, in the current setting the description of the class W is
equivalent to the description of the class {Sq | q ∈ Q}. Our aim is to show that the
class {Sq | q ∈ Q} can efficiently be described in terms of some functional Banach
algebra introduced below.

To formulate the main result of the paper, let us recall some definitions. The central
object in inverse scattering problems is the scattering function S = Sq of the operator Tq
defined as

S(λ) := e(−λ)
e(λ) , λ ∈ R, (1.1)

where e(λ) := e(λ, 0) and e(λ, ·) is the Jost solution of the equation

−y′′ + qy = λ2y, λ ∈ C+. (1.2)

Recall that e(λ, ·), λ ∈ C+, is called the Jost solution of the equation (1.2) if

e(λ, x) = eiλx(1 + o(1)), x→ +∞.

The spectrum of the operator Tq with q ∈ Q consists of the absolutely continuous part
filling the whole positive half-axis and the point spectrum consisting of a finite number
of negative simple eigenvalues. Let us enumerate these eigenvalues in the ascending
order of their moduli and denote them by −κ2

s, s = 1, . . . , n, where κs = κs(q) > 0.
To each eigenvalue λ = −κ2

s, there correspond the eigenfunction e(iκs, ·) and the
norming constant ms = ms(q) defined as

ms =



∞∫

0

|e(iκs, x)|2 dx



− 1

2

.

The scattering data of the operator Tq are defined as the triple sq := (Sq, ~κq, ~mq),
where ~κq := (κs(q))ns=1, ~mq := (ms(q))ns=1. If n = 0, then sq = (Sq, 0, 0). Let us put

Ωn := {(κ1, . . . , κn) ∈ Rn | 0 < κ1 < · · · < κn}, n ∈ N.

Theorem 1.1 (The Marchenko theorem). Let n ∈ N (n = 0). A triple (S,~κ, ~m)
((S, 0, 0)), where S : R→ C, ~κ ∈ Ωn, ~m ∈ Rn+, is the scattering data of some T ∈ T
if and only if the following conditions are satisfied:
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(i) lim
ξ→∞

S(ξ) = 1, S(λ)S(−λ) = |S(λ)| = 1, λ ∈ R;
(ii) S is continuous on R and the function

FS(x) := 1
2π

∫

R

(1− S(λ))eiλx dλ

is the sum of functions g1 and g2 with g1 ∈ L1(R) and g2 ∈ L∞(R) ∩ L2(R);
(iii) the function FS is locally absolutely continuous on R+ and F ′S ∈ L1(R+, xdx);
(iv) n = lnS(+0)−lnS(+∞)

2πi − 1−S(0)
4 .

Let X be a Banach space consisting of functions u ∈ W 1
1,loc(R \ {0}) ∩ L1(R)

for which the norm
‖u‖X :=

∫

R

|xu′(x)|dx

is finite. As will be shown below, X is continuously embedded in L1(R). Consider
a Banach space

B := {α1 + ϕ̂ | α ∈ C, ϕ ∈ X} (1.3)

with the norm
‖α1 + ϕ̂‖B := |α|+ 3‖ϕ‖X . (1.4)

Here 1(x) ≡ 1 and ϕ̂ is the Fourier transform of a function ϕ. Note that B consists
of functions that are continuous on the one-point compactification R̂ of the real line
(R̂ = R ∪ {∞}). It turns out that under the standard pointwise multiplication B is
a commutative Banach algebra with unit.

The main result of this paper is:

Theorem 1.2. The set {Sq | q ∈ Q} coincides with the set

SQ = {S ∈ B | S(∞) = 1 and S(λ)S(−λ) = |S(λ)| = 1 for all λ ∈ R}

and is a multiplicative group.

By virtue of this result, the Marchenko theorem can be reformulated as follows:

Theorem 1.3. Let n ∈ N (resp. n = 0). A triple (S,~κ, ~m) (resp. (S, 0, 0)), where
S : R → C, ~κ ∈ Ωn, ~m ∈ Rn+, is the scattering data of some T ∈ T if and only if
S belongs to SQ and

[−indS/2] = n, (1.5)

where indS := ((lnS)(∞)− (lnS)(−∞))/2πi and [x] is the integer part of a number x.

This paper is organized as follows. In Section 2, we study some properties
of the algebra B. In Section 3, we prove Theorems 1.2 and 1.3.
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2. THE BANACH ALGEBRA B

Let us consider a classical commutative Banach algebra

A := {α1 + ϕ̂ | α ∈ C, ϕ ∈ L1(R)}

with the norm
‖α1 + ϕ̂‖A := |α|+ ‖ϕ‖1. (2.1)

Here ‖ · ‖1 is the norm of L1(R) and ϕ̂ is the Fourier transform of a function ϕ, i.e.

ϕ̂(λ) := (Fϕ)(λ) :=
∫

R

eiλtϕ(t) dt, λ ∈ R.

Multiplication in A is the standard pointwise multiplication and

‖fg‖A ≤ ‖f‖A‖g‖A, f, g ∈ A. (2.2)

It is known that every function f ∈ A is continuous on R̂.
In the algebra A, we consider the closed subalgebras:

A+ := {f = α1 + ĥ | α ∈ C, h ∈ L1(R), h
∣∣R− = 0},

A0 := {f = ĥ | h ∈ L1(R)}.

The main result of this section is the following theorem.

Theorem 2.1. Equations (1.3) and (1.4) define a unital Banach algebra B, that is,
continuously embedded in the algebra A. Moreover, B is the Wiener algebra, i.e.,
if f ∈ B and 0 /∈ f(R̂), then f is invertible in B.

First, let us make a few remarks and prove some lemmas.

Remark 2.2. Obviously, completeness of the space B is equivalent to completeness of
its subspace X̂ := {û | u ∈ X}. Since X̂ and X are isometric (where the operator 1

3F
is an isometry of X onto X̂), X̂ and B are Banach spaces.

Let us denote by X+ and X− the Banach spaces consisting of all those u+ ∈
W 1

1,loc(R+) ∩ L1(R+) and u− ∈W 1
1,loc(R−) ∩ L1(R−) for which the norm

‖u±‖X± :=
∫

R±

|xu′±(x)|dx

is finite. Let us agree to identify X± with the subspaces {f ∈ X | f
∣∣R∓ = 0

}
in

the space X. Then X = X+ ⊕X−.
Define by Λ the operator of multiplication by an independent variable acting on

the space L1,loc(R), i.e.

(Λf)(x) := xf(x), f ∈ L1,loc(R).
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Lemma 2.3. The space X is continuously embedded in L1(R) and for all u ∈ X
it holds

‖u‖1 ≤ ‖u‖X , ‖Λu‖∞ ≤ ‖u‖X , (2.3)

xu(x) = o(1), x→ +∞ or x→ +0. (2.4)

Proof. Obviously, it suffices to prove (2.3) and (2.4) for u ∈ X+. Let u ∈ X+. Since

|u(x)| ≤
∞∫

x

|u′(t)|dt, x ∈ R+,

we get

x|u(x)| ≤ x
∞∫

x

|u′(t)|dt ≤
∞∫

x

t|u′(t)|dt, x ∈ R+,

and
∞∫

0

|u(x)|dx ≤
∞∫

0

∞∫

x

|u′(t)|dtdx ≤
∫

R+

t|u′(t)|dt.

Also, for an arbitrary x ∈ (0, 1), it holds

u(x2) = u(x)−
x∫

x2

u′(t) dt

and, therefore,

x2|u(x2)| ≤ xx|u(x)|+
x∫

x2

t|u′(t)|dt = o(1), x→ +0.

Using the above-mentioned relations we then obtain the statement of the lemma.

Remark 2.4. It follows from (2.3) that the space X̂ (the space B) is continuously
embedded in A0 (A) and

‖ϕ‖A ≤
1
3‖ϕ‖B, ϕ ∈ X̂. (2.5)

We denote by S the Schwartz space of all rapidly decreasing functions on R, i.e.,

S := {f ∈ C∞(R) | ∀k,m ∈ Z+ f (k)(x) = O(x−m), x→∞}.
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Lemma 2.5. S is dense everywhere in the space X and in X̂.

Proof. Since the Fourier transform is a homeomorphism of the Schwartz class, it suffices
to show that S is dense everywhere in the space X. Let f ∈ X. Consider the sequence
fn := fθn (n ∈ N), where the functions θn : R→ [0, 1] are given by the formula

θn(x) :=





1, if 1/n ≤ |x| ≤ n,
2− |x|/n, if 1 < |x|/n < 2,
2n|x| − 1, if 1 < 2n|x| < 2,
0, if 2n|x| ≤ 1 or |x|/n ≥ 2.

Clearly, fn ∈ X and

‖f − fn‖X =
∫

R

|tf ′(t)− tf ′n(t)|dt ≤
∫

R\An

(|tf ′(t)|+ 2|f(t)|) dt,

where An := {x ∈ R | 1/n ≤ |x| ≤ n}. Therefore, fn X→ f as n → +∞ and thus it
suffices to prove that every function from the set

X0 := {f ∈ X | ∃n ∈ N supp f ⊂ An}

can be approximated by elements from S in the norm ofX. Let u ∈ X0 and ω ∈ C∞(R)
be an arbitrary non–negative function for which

suppω ⊂ [−1, 1],
∫

R

ω(t) dt = 1.

Obviously, for an arbitrary ε > 0 the function

uε(x) := 1
ε

∫

R

u(t)ω
(
x− t
ε

)
dt, x ∈ R,

belongs to S . Note that

u(x)− uε(x) =
∫

R

[u(x)− u(x− εy)]ω(y) dy

and that both the derivative u′ and the function v(x) := xu′(x) belong to L1(R).
Therefore, it holds

‖u− uε‖X ≤
∫

R

∫

R

(|v(x)− v(x− εy)|+ ε|yu′(x− εy)|)ω(y) dy dx

and hence uε
X→u as ε→ +0. The proof is complete.
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Proof of Theorem 2.1. Taking into account (1.4), (2.1) and the properties of Fourier
transform, we obtain that for an arbitrary ϕ ∈ S it holds

1
3‖ϕ‖B = ‖F−1ϕ‖X = ‖Λ(F−1ϕ)′‖1 = ‖FΛ(F−1ϕ)′‖A = ‖ϕ+ Λϕ′‖A. (2.6)

Taking into account (2.2), we obtain that for an arbitrary ϕ,ψ ∈ S ,

‖ϕψ + Λ(ϕψ)′‖A ≤ ‖ϕ+ Λϕ′‖A‖ψ‖A + ‖ϕ‖A‖ψ + Λψ′‖A + ‖ϕ‖A‖ψ‖A.

Thus, according to (2.5) and (2.6), we have

‖ϕψ‖B ≤ ‖ϕ‖B‖ψ‖B, ϕ, ψ ∈ S . (2.7)

Let u, v ∈ X̂. Taking into account Lemma 2.5, it follows that there are se-
quences (un)n∈N and (vn)n∈N in S such that un

B→u and vn
B→ v as n→∞. From (2.7)

it then follows that the sequence wn := unvn, n ∈ N, is fundamental in the space X̂.
Since the space X̂ is complete (see Remark 2.2), the sequence (wn)n∈N converges in
X̂ to some w. Since B is continuously embedded in A (see Remark 2.4), the sequence
(wn)n∈N converges in A to the product uv and uv = w. Therefore,

‖uv‖B = lim
n→∞

‖unvn‖B ≤ lim
n→∞

‖un‖B‖vn‖B = ‖u‖B‖v‖B.

It follows from the above that B is a Banach algebra with the unit 1.
Let us prove that B is a Wiener algebra. Let f ∈ B and 0 /∈ f(R̂). Then f = α1+ϕ,

where α ∈ C \ {0} and ϕ ∈ X̂. Taking into account Lemma 2.5, there exists a sequence
(ϕn)n∈N in S such that ϕn

B→ϕ as n→∞. It follows from (2.6) that the sequence

ψn := ϕn + Λϕ′n, n ∈ N,

is fundamental in A. According to the classical Wiener lemma, the element f is
invertible in A. Thus, for some n0 ∈ N the elements fn := α1 + ϕn, n ≥ n0,
are invertible in A and the sequence gn := f−1

n , n ≥ n0, converges in A. Note that the
functions

hn := gn − α−11, n ≥ n0,

belong to S . To prove invertibility of f in the algebra B, it suffices to show that the
sequence (hn)n∈N is fundamental in B. In view of (2.6), this is equivalent to the fact
that the sequence wn := Λh′n, n ≥ n0, is fundamental in A. It is easily seen that

wn = (ϕn − ψn)g2
n.

Since the sequences (ϕn)n∈N, (ψn)n∈N and (gn)∞n=n0 are fundamental in A, the sequence
(wn)∞n=n0 is also fundamental in A, and the proof is complete.

Remark 2.6. The space X̂ := {û | u ∈ X} is a maximal ideal in B. If α ∈ C \ R,
then the function fα(λ) := (λ+ α)−1 belongs to X̂.
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3. PROOF OF THEOREMS 1.2 AND 1.3

First we will present two auxiliary lemmas the ideas of which can be traced back
to [1, Chapter 3].

Lemma 3.1. Let ϕ ∈ L∞(R+), ψ ∈ L1(R+). If the function

g(x) := ϕ(x) +
∞∫

0

ϕ(t)ψ(x+ t) dt, x ∈ R+, (3.1)

belongs to L1(R+), then ϕ ∈ L1(R+). In addition, if g ∈ X+ and ψ ∈ X+, then ϕ ∈ X+.

Proof. Let us choose α > 0 such that
∫∞
α
|ψ(x)|dx ≤ 1/2. Then the operator

(V f)(x) :=
∞∫

α

f(t)ψ(x+ t) dt, x ∈ R+,

is continuous in Lp(R+) (p ∈ [1,∞]) and ‖V ‖Lp→Lp
≤ 1/2. Since the function

gα(x) := g(x)−
α∫

0

ϕ(t)ψ(x+ t) dt, x ∈ R+,

belongs to L1(R+)∩L∞(R+) and ϕ = (I+V )−1gα, we have that ‖ϕ‖1 ≤ 2‖gα‖1 <∞.
If g ∈ X+ and ψ ∈ X+, then

g(x) = −
∞∫

x

g′(ξ) dξ, ψ(x) = −
∞∫

x

ψ′(ξ) dξ, x ∈ R+.

In view of (3.1),

ϕ(x) = −
∞∫

x

g′(ξ) dξ +
∞∫

0

ϕ(t)
∞∫

x

ψ′(ξ + t) dξ dt.

Using Fubini’s theorem, we get

ϕ(x) = −
∞∫

x


g′(ξ)−

∞∫

0

ϕ(t)ψ′(ξ + t) dt


 dξ, x ∈ R+,

and thus the function ϕ is locally absolutely continuous on R+ and

ϕ′(x) = g′(x)−
∞∫

0

ϕ(t)ψ′(x+ t) dt, x ∈ R+.
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Thus we obtain that
∞∫

0

x|ϕ′(x)|dx ≤
∞∫

0

x|g′(x)|dx+
∞∫

0

∞∫

0

|ϕ(t)| |(x+ t)ψ′(x+ t)|dtdx

and therefore
‖ϕ‖X+ ≤ ‖g‖X+ + ‖ϕ‖1‖ψ‖X+ <∞

as claimed.

Lemma 3.2. Let the functions ϕ ∈ L1(R+) and ψ ∈ X+ be related via

ϕ(x) + ψ(x) +
∞∫

0

ϕ(t)ψ(x+ t) dt = 0, x ∈ R+, (3.2)

and the function f be given by the formula

f(λ) = 1 +
∞∫

0

ϕ(t)eiλt dt, λ ∈ R.

If f(0) = 0, then there exists g ∈ B such that g(∞) = 1 and f(λ) = λ
λ+ig(λ).

Proof. Let the conditions of the lemma be satisfied. From Lemma 3.1, it follows that
ϕ ∈ X+ and thus f ∈ B. Let us show that the function

h(x) :=
∞∫

x

ϕ(t) dt, x ∈ R+,

also belongs to X+. Consider an auxiliary function

Φ(x) := h(x)−
∞∫

0

h(t)ψ(x+ t) dt, x ∈ R+.

It can be easily seen that limx→+∞Φ(x) = 0 and h(0) = −1. Integrating by parts,
for all x ∈ R+ we get

Φ′(x) = −ϕ(x)−
∞∫

0

h(t)ψ′(x+ t) dt = − ϕ(x)− ψ(x)−
∞∫

0

ϕ(t)ψ(x+ t) dt.

The equality (3.2) implies that Φ′(x) ≡ 0. Therefore, Φ(x) ≡ 0 and, consequently,

h(x) =
∞∫

0

h(t)ψ(x+ t) dt, x ∈ R+.



728 Yaroslav Mykytyuk and Nataliia Sushchyk

It follows from the definition of the function h that h ∈ L∞(R+). Therefore, taking
into account Lemma 3.1, it follows that the function h belongs to L1(R+) and to X+
as well. Consequently, according to the formula (1.3), the function

g1(λ) := i
∞∫

0

h(t)eiλt dt, λ ∈ R,

belongs to the algebra B. Integrating by parts, we get

λg1(λ) =
∞∫

0

h(t)
(
d

dt
eiλt
)

dt = −h(0) +
∞∫

0

ϕ(t)eiλt dt = f(λ).

Let g(λ) := (λ + i)g1(λ). Since g1, f ∈ B, we get that g ∈ B. Furthermore, it holds
g(∞) = f(∞) = 1 and λ(λ+ i)−1g(λ) = λg1(λ) = f(λ).

Below we list some facts from [1, Chapter 3]. Let q ∈ Q and

σ(x) :=
∞∫

x

|q(ξ)|dξ, σ1(x) :=
∞∫

x

ξ|q(ξ)|dξ.

1. The solution of the Jost equation (1.2) can be represented in the form

e(λ, x) = eiλx +
∞∫

x

K(x, t)eiλt dt, λ ∈ C+, x ∈ R+, (3.3)

where the kernel K is continuous on the set Ω := {(x, t) ∈ R2 | 0 ≤ x ≤ t} and

|K(x, t)| ≤ σ
(
x+ t

2

)
exp{σ1(x)}, (x, t) ∈ Ω. (3.4)

2. The kernel K is a solution of the Marchenko equation

F (x+ t) +K(x, t) +
∞∫

x

K(x, ξ)F (ξ + t) dξ = 0, (x, t) ∈ Ω, (3.5)

with F given by

F (x) :=
n∑

s=1
m2
se−κsx + FS(x), x ≥ 0,

where
FS(x) := 1

2π

∫

R

(1− S(λ))eiλx dλ, x ∈ R.
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3. For λ ∈ R \ {0}, the following estimate for the derivative of the Jost solution holds

|e′(λ, x)− iλeiλx| ≤ σ(x) exp{σ1(x)}, x ∈ R+, (3.6)

and the formula

ω(λ, x) := e(−λ, 0)e(λ, x)− e(λ, 0)e(−λ, x)
2iλ , x ∈ R+, (3.7)

defines a solution of the equation (1.2) satisfying

ω(λ, x) = x(1 + o(1)), ω′(λ, x) = 1 + o(1), x→ +0. (3.8)

4. The Jost function e(λ) := e(λ, 0) does not vanish on R \ {0}.

Proof of Theorem 1.2. It is clear that SQ is a multiplicative group in the algebra B.
Next we take an arbitrary S ∈ SQ, set n := [−indS/2], and fix arbitrary ~κ ∈ Ωn

and ~m ∈ Rn+. It follows from the definition of the set SQ that the triple (S,~κ, ~m)
satisfies assumptions (i)–(iii). We next show that the condition (iv) is satisfied as well.

Noting that S(0) ∈ {1;−1}, we denote by h a branch of the function 1
2πi lnS that

is continuous on R and satisfies the conditions h(0) = 0 if S(0) = 1 and h(0) = 1/2 if
S(0) = −1. Since S(−λ) = S(λ), we get

h(−x) = −h(x) +m, x ≥ 0,

where m ∈ {0; 1}. Therefore, h(+∞)− h(0) = h(0)− h(−∞), which implies that

−indS = h(−∞)− h(+∞) = 2(h(0)− h(+∞)).

Keeping in mind that S(+∞) = 1, we conclude that the number h(+∞) is integer.
As a result,

n = [−indS/2] = −h(+∞) = lnS(0)− lnS(+∞)
2πi − 1− S(0)

4 ,

i.e., (iv) holds.
Finally, by virtue of the Marchenko theorem we have S = Sq for some q ∈ Q and

thus
SQ ⊂ {Sq | q ∈ Q}. (3.9)

Assume now that q ∈ Q and S = Sq. In view of (3.9) Theorem 1.2 will be proved
as soon as we show that S ∈ SQ. According to the Marchenko theorem, S satisfies
conditions (i)–(iii). In view of (3.4) the function ϕ(t) := K(0, t) belongs to the space
L1(R+). It follows from (3.3) and (3.5) that

e(λ) = 1 +
∞∫

0

ϕ(x)eiλx dx, λ ∈ C+,
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and

ϕ(t) + F (t) +
∞∫

0

ϕ(ξ)F (ξ + t) dξ = 0. (3.10)

According to condition (iii) of the Marchenko theorem, the function FS (and thus
the function F ) belongs ot the space X+. Therefore, equation (3.10) and Lemma 3.1
imply that ϕ ∈ X+. Based on Theorem 2.1 we conclude that the functions λ→ e(λ)
and λ→ e(−λ) belong to the algebra B. We next show that the function S given by
formula (1.1), also belongs ot B.

If e(0) 6= 0, then in view of 4◦ the function e(·) never vanishes on R̂. Therefore in
view of Theorem 2.1 it is an invertible element of B, so that S ∈ B.

If e(0) = 0, then by virtue of Lemma 3.2 there exists g ∈ B such that g(∞) = 1
and

e(λ) = λ

λ+ ig(λ). (3.11)

Let us show that g(0) 6= 0. It follows from estimate (3.6) that there is a C > 0 such
that

|e′(λ, x)| ≤ C, x ∈ R+, λ ∈ [−1, 1] \ {0}.
Therefore (cf. (3.7)),

|ω′(λ, x)| ≤ C(|g(−λ)|+ |g(λ)|), x ∈ R+, λ ∈ [−1, 1] \ {0}.

It follows from (3.8) that

1 = lim
x→+0

|ω′(λ, x)| ≤ C(|g(−λ)|+ |g(λ)|), λ ∈ [−1, 1] \ {0}.

Taking into account continuity of the function g, we see that 1 ≤ 2C|g(0)|, so that
g(0) 6= 0. Combining this with 4◦ and (3.11), we conclude that g is an invertible
element of the algebra B. Since

S(λ) = λ+ i
λ− i

g(−λ)
g(λ) , λ ∈ R,

in view of Remark 2.6 we arrive at the conclusion that the function S belongs to B.

Proof of Theorem 1.3. We first prove sufficiency. Let s = (S,~κ, ~m), where S ∈ B,
~κ ∈ Ωn, and ~m ∈ Rn+ satisfy the equality (1.5). Then the first part of the proof of
Theorem 1.2 shows that the triple (S,~κ, ~m) gives the scattering data for some operator
T ∈ T , as claimed.

Conversely, let a triple s = (S,~κ, ~m) be the scattering data for some operator Tq
with q ∈ Q. Then S = Sq, and in virtue of Theorem 1.2 we have S ∈ SQ. Moreover,
the Marchenko theorem implies that (iv) is satisfied as well. However, the first part of
the proof of Theorem 1.2 shows that (iv) is equivalent to the condition [−indS/2] = n.
Therefore, the proof of necessity (and the theorem) is complete.
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