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Abstract

In this paper some basic properties of (h,e)-implications are studied. This kind of im-
plications has been recently introduced (see [29]). They are implications generated from
an additive generator of a representable uninorm in a similar way of Yager’s f - and g-
implications which are generated from additive generators of continuous Archimedean
t-norms and t-conorms, respectively. In addition, they satisfy a classical property of some
types of implications derived from uninorms that is I(e,y) = y for all y ∈ [0,1]. Moreover
they are examples of fuzzy implications satisfying the exchange principle but not the law
of importation for any t-norm, in fact for any function F : [0,1]2 → [0,1]. On the other
hand, the distributivities with conjunctions and disjunctions (t-norms and t-conorms) are
also studied leading to new solutions of the corresponding functional equations. Finally,
it is proved that they do not intersect with any of the most used classes of implications.

1 Introduction

Fuzzy implications have become a keystone in
fuzzy control and approximate reasoning, as well
as in many fields where these theories apply. Al-
though they were introduced to model fuzzy con-
ditionals, they also manage backward and forward
inferences in any fuzzy rules based system (see for
instance [17], [19] or [27]). Moreover, fuzzy impli-
cations are also useful in fuzzy relational equations
and fuzzy mathematical morphology ([27]), fuzzy
DI-subsethood measures and image processing ([9]
and [10]) and data mining ([36]) among many other
fields. Consequently, many authors have focused
their interest in the theoretical study of fuzzy impli-
cations. See for instance, the surveys [27] and [4],
and also the recent book [3], exclusively devoted to
fuzzy implications.

Fuzzy implications have been commonly ob-
tained by combinations of some kinds of aggrega-
tion functions. Not only t-norms and t-conorms, but
also copulas, quasi-copulas and even conjunctors
in general ([14]), representable aggregation func-

tions ([11]), and mainly uninorms ([1], [5], [13],
[24], [32], [31]). However, there exists a differ-
ent approach in order to obtain fuzzy implications
based on the direct use of additive generating func-
tions. In this way, Yager’s f - and g-generated
fuzzy implications ([35]) can be seen as implica-
tions generated from additive generators of contin-
uous Archimedean t-norms or t-conorms, respec-
tively. Another attempt was the use of multiplica-
tive generators of t-conorms to propose a new class
of fuzzy implications, called the h-generated impli-
cations ([7]). This family of implications is con-
tained in the family of all (S,N)-implications ob-
tained from continuous negations (see [2]).

In this work, we propose a new method to ob-
tain fuzzy implications through the use of genera-
tors of representable uninorms, i.e., from contin-
uous and strictly increasing functions h : [0,1] →
[−∞,∞] with h(0) =−∞, h(1) = ∞ and h(e) = 0 for
some fixed e ∈ (0,1). This new class of implica-
tions, called (h,e)-implications, satisfy a common
property among the types of implications derived
from uninorms, that is, I(e,y) = y for all y ∈ [0,1].
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Another interesting property satisfied by these im-
plications is that they are a whole class of implica-
tions that satisfy the exchange principle but not the
law of importation for any t-norm T . Other prop-
erties are studied in detail, specially the distribu-
tivity. The distributivity properties with t-norms
and t-conorms have been used in avoiding combina-
tory rule explosion in fuzzy systems ([12]), and for
this reason many authors have dealt with them (see
[32], [33], [34]). Finally, the intersections with the
most known classes of fuzzy implications are estab-
lished. In fact, it is proved that (h,e)-implications
are a new class of implications literally since they
do not intersect with any other known class.

The communication is organized as follows. In
the next section we recall the basic definitions and
properties of implications needed in the subsequent
sections. In Section 3, we present the definition of
(h,e)-implications and we discuss then, the prop-
erties satisfied by this new class of fuzzy implica-
tions. Section 4 is completely devoted to the study
of the distributivity properties, and Section 5 deals
with the intersections of these implications with the
other families. The paper ends with some conclu-
sions and future work.

2 Preliminaries

We will suppose the reader to be familiar with
the theory of t-norms and t-conorms (all necessary
results and notations can be found in [23]). To make
this work self-contained, we recall here some of the
concepts and results employed in the rest of the pa-
per.

2.1 Fuzzy Negations

Definition 1. (see Definition 1.1 in [15] and
Definition 11.3 in [23]) A decreasing function N :
[0,1]→ [0,1] is called a fuzzy negation, if N(0)= 1,
N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous.

(ii) strong, if it is an involution, i.e., N(N(x)) = x for
all x ∈ [0,1].

2.2 Fuzzy Implications

Definition 2. (see Definition 1.15 in [15], Def-
inition 1.1.1 in [3]) A binary operator I : [0,1]2 →

[0,1] is said to be an implication function, or an im-
plication, if it satisfies:

(I1) I(x,z)≥ I(y,z) when x ≤ y, for all z ∈ [0,1].

(I2) I(x,y)≤ I(x,z) when y ≤ z, for all x ∈ [0,1].

(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.

Note that, from the definition, it follows that
I(0,x) = 1 and I(x,1) = 1 for all x ∈ [0,1] whereas
the symmetrical values I(x,0) and I(1,x) are not de-
rived from the definition. We will denote by F I the
set of all implications. Special interesting proper-
ties for implication functions are:

– The exchange principle,

I(x, I(y,z)) = I(y, I(x,z)), for all x,y,z ∈ [0,1].
(EP)

– The law of importation with a t-norm T ,

I(T (x,y),z)= I(x, I(y,z)), for all x,y,z∈ [0,1].
(LI)

– The weak law of importation with a conjunc-
tive, commutative and nondecreasing function
F : [0,1]2 → [0,1], (see [28])

I(F(x,y),z)= I(x, I(y,z)), for all x,y,z∈ [0,1].
(WLI)

– The left neutrality principle,

I(1,y) = y, y ∈ [0,1]. (NP)

– The ordering property,

x ≤ y ⇐⇒ I(x,y) = 1, for all x,y ∈ [0,1].
(OP)

– The identity principle,

I(x,x) = 1, x ∈ [0,1]. (IP)

– The contrapositive symmetry with respect to a
fuzzy negation N,

I(x,y) = I(N(y),N(x)), for all x,y ∈ [0,1].
(CP(N))

Definition 3. (see Definition 1.14.15 in [3]) Let
I be a fuzzy implication. The function NI defined
by NI(x) = I(x,0) for all x ∈ [0,1], is called the nat-
ural negation associated to I.

The most usual kinds of implications are:
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ON SOME PROPERTIES OF . . .

– (S,N)-implications derived from a t-conorm S
and a fuzzy negation N by IS,N(x,y) = S(N(x),y)
for all x,y ∈ [0,1]. If N is strong, they are called
S-implications.

– R-implications derived from a t-norm T by

IT (x,y) = sup{z ∈ [0,1] | T (x,z)≤ y}

for all x,y ∈ [0,1].

– QL-operations derived from a t-conorm S, a t-
norm T and a fuzzy negation N by IQL(x,y) =
S(N(x),T (x,y)) for all x,y ∈ [0,1].

– D-operations derived from a t-conorm S, a t-
norm T and a fuzzy negation N by ID(x,y) =
S(T (N(x),N(y)),y) for all x,y ∈ [0,1].

These models of fuzzy implications have their
counterpart for uninorms (see [5], [13], [24], [31])
where conjunctive and disjunctive uninorms play
the role of t-norms and t-conorms respectively.
Thus (U,N), RU , QLU and DU-implications are
defined. Next, the definitions of Yager’s classes of
fuzzy implications are given.

Definition 4. ([35], [3]) Let f : [0,1]→ [0,∞] be
a strictly decreasing and continuous function with
f (1) = 0. The function I : [0,1]2 → [0,1] defined by

I(x,y) = f−1(x · f (y)), x,y ∈ [0,1]

with the understanding 0 · ∞ = 0, is called an f -
generated implication. The function f is called an
f -generator of the function I. In this case, we will
write I f instead of I.

Definition 5. ([35], [3]) Let g : [0,1]→ [0,∞] be
a strictly increasing and continuous function with
g(0) = 0. The function I : [0,1]2 → [0,1] defined by

I(x,y) = g(−1)
(

1
x
·g(y)

)
, x,y ∈ [0,1]

with the understanding 1
0 = ∞ and ∞ · 0 = ∞, is

called a g-generated implication, where the func-
tion g(−1) is the pseudo-inverse of g given by

g(−1)(x) =
{

g−1(x) if x ∈ [0,g(1)],
1 if x ∈ [g(1),∞].

The function g is called a g-generator of the func-
tion I. In this case, we will write Ig instead of I.

Finally, it follows the definition of h-generated
implications. Note that this class of implications,
unlike (h,e)-implications presented in this paper, is
based on the use of multiplicative generators of t-
conorms.

Definition 6. ([7]) If h : [0,1] → [0,1] is a
strictly decreasing and continuous function with
h(0) = 1, then the function I : [0,1]2 → [0,1] de-
fined by

I(x,y) = h(−1)(x ·h(y)), x,y ∈ [0,1],

is a fuzzy implication, where h(−1) is the pseudo-
inverse of h given by

h(−1)(x) =
{

h−1(x) if x ∈ [h(1),1],
1 if x ∈ [0,h(1)].

3 (h,e)-Implications

Yager’s implications are obtained through
the use of additive generators of t-norms for f -
generated implications and additive generators of
t-conorms for g-generated implications. In [16],
representable uninorms were introduced by anal-
ogy to the representation theorems for continuous
Archimedean t-norms and t-conorms. This class
of uninorms is defined by means of a continuous
and strictly increasing function h : [0,1]→ [−∞,∞]
such that h(0) = −∞, h(e) = 0 for an e ∈ (0,1)
and h(1) = ∞ which is unique up to a positive mul-
tiplicative constant. From this function h, several
new classes of implications can be obtained in an
analogous way to Yager’s. In [29], h-implications
and some modifications and generalizations were
introduced as new classes of fuzzy implications
generated from additive generators of representable
uninorms.

From these new classes of implications, the
class of (h,e)-implications is the only one that sat-
isfies (NPe), that is I(e,y) = y for all y ∈ [0,1] for
some fixed e ∈ (0,1). Among the classes of im-
plications derived from uninorms, this property is
quite interesting since it can be seen as the counter-
part of (NP) for these classes of implications since e
plays the role of 1 as the neutral element of the uni-
norm. In this way, RU-implications, e-implications
and pseudo-e-implications (see [20], [21]) satisfy
this property. Moreover, the two latter classes in-
clude this property as an axiom in their definitions.
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Therefore, (h,e)-implications deserve a deep study.
In [29], only some initial properties of these impli-
cations were listed and few of them proved. So, for
the sake of completeness, we recall here the defini-
tion and these basic properties including the proofs
that were omitted in [29].

Definition 7. Let h : [0,1] → [−∞,∞] be a
strictly increasing and continuous function with
h(0) = −∞, h(e) = 0 for an e ∈ (0,1) and h(1) =
+∞. The function I : [0,1]2 → [0,1] defined by

I(x,y) =





1 if x = 0,
h−1

( x
e ·h(y)

)
if x > 0 and y ≤ e,

h−1
( e

x ·h(y)
)

if x > 0 and y > e,

is called an (h,e)-implication. The function h is
called an h-generator of the function I. We will
write in this case Ih,e instead of I.

Note now that they are always fuzzy implica-
tions.

Proposition 8. If h is an h-generator with respect to
a fixed e ∈ (0,1), then Ih,e ∈ F I .

Proof. First of all, recall that h is strictly increas-
ing and consequently also h−1. This fact is useful
to prove (I1) and (I2).

– Consider x1 ≤ x2. If x1 = 0, Ih,e(0,y) = 1 ≥
Ih,e(x2,y) for all y ∈ [0,1]. Otherwise,

– If y≤ e, then h(y)≤ 0 and x1
e ·h(y)≥ x2

e ·h(y).
Consequently,

Ih,e(x1,y) = h−1
( x1

e ·h(y)
)

≥ h−1
( x2

e ·h(y)
)

= Ih,e(x2,y).

– If y> e, then h(y)> 0 and e
x1
·h(y)≥ e

x2
·h(y).

Consequently,

Ih,e(x1,y) = h−1
(

e
x1
·h(y)

)

≥ h−1
(

e
x2
·h(y)

)

= Ih,e(x2,y).

I.e., Ih,e satisfies (I1).

– Consider y1 ≤ y2. If x = 0, Ih,e(0,y1) = 1 =
Ih,e(0,y2). Otherwise,

– If y1 ≤ y2 ≤ e, then h(y1)≤ h(y2)≤ 0 and

Ih,e(x,y1) = h−1
( x

e ·h(y1)
)

≤ h−1
( x

e ·h(y2)
)
= Ih,e(x,y2).

– If y1 ≤ e < y2, then h(y1)≤ 0 < h(y2) and

Ih,e(x,y1) = h−1
( x

e ·h(y1)
)
≤ h−1(0)

= e < h−1
( e

x ·h(y2)
)

= Ih,e(x,y2).

– If e < y1 ≤ y2, then h(y2)≥ h(y1)> 0 and

Ih,e(x,y1) = h−1
( e

x ·h(y1)
)

≤ h−1
( e

x ·h(y2)
)
= Ih,e(x,y2).

I.e., Ih,e satisfies (I2).

Finally, it satisfies the boundary conditions.

– Ih,e(0,0) = 1 by construction.

– Ih,e(1,1) = h−1
( e

1 ·h(1)
)
= h−1(∞) = 1.

– Ih,e(1,0) = h−1
(1

e ·h(0)
)
= h−1(−∞) = 0.

Example 9. From [16], an h-generator can be seen
as the generator of a representable uninorm. Let us
show the (h,e)-implications derived from the most
usual generators of representable uninorms. The
plot of these implications can be viewed in Figure 1
and Figure 2 .

(i) If we take the h-generator h1(x) = ln
( x

1−x

)
,

which is the additive generator of the following
conjunctive uninorm

Uc
h1
(x,y)=




0 if (x,y) ∈ {(0,1),
(1,0)},

xy
(1−x)(1−y)+xy otherwise,

then we obtain the following implication

Ih1,e(x,y)=




1 if x = 0,
y2x

(1−y)2x+y2x if x > 0 and y ≤ 1
2 ,

y
1
2x

(1−y)
1
2x +y

1
2x

if x > 0 and y > 1
2 .

(ii) Let us consider the h-generator h2(x) =

ln
(
− 1

β ln(1− x)
)

with β > 0. This func-
tion generates the following disjunctive repre-
sentable uninorm

Ud
h2
(x,y)=




1 if (x,y) ∈ {(0,1),(1,0)},
1− exp

(
− 1

β ln(1− x)ln(1− y)
)

otherwise,
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Finally, it satisfies the boundary conditions.

– Ih,e(0,0) = 1 by construction.

– Ih,e(1,1) = h−1
( e

1 ·h(1)
)
= h−1(∞) = 1.

– Ih,e(1,0) = h−1
(1

e ·h(0)
)
= h−1(−∞) = 0.

Example 9. From [16], an h-generator can be seen
as the generator of a representable uninorm. Let us
show the (h,e)-implications derived from the most
usual generators of representable uninorms. The
plot of these implications can be viewed in Figure 1
and Figure 2 .

(i) If we take the h-generator h1(x) = ln
( x

1−x

)
,

which is the additive generator of the following
conjunctive uninorm

Uc
h1
(x,y)=




0 if (x,y) ∈ {(0,1),
(1,0)},

xy
(1−x)(1−y)+xy otherwise,

then we obtain the following implication

Ih1,e(x,y)=




1 if x = 0,
y2x

(1−y)2x+y2x if x > 0 and y ≤ 1
2 ,

y
1
2x

(1−y)
1
2x +y

1
2x

if x > 0 and y > 1
2 .

(ii) Let us consider the h-generator h2(x) =

ln
(
− 1

β ln(1− x)
)

with β > 0. This func-
tion generates the following disjunctive repre-
sentable uninorm

Ud
h2
(x,y)=




1 if (x,y) ∈ {(0,1),(1,0)},
1− exp

(
− 1

β ln(1− x)ln(1− y)
)

otherwise,
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with neutral element e = 1 − exp(−β). From
this h-generator, we obtain the following impli-
cation

Ih2,e(x,y)=




1 if x = 0,

1− exp
(
−β

(
− 1

β ln(1− y)
) x

1−exp(−β)
)

if x > 0 and y ≤ 1− exp(−β),

1− exp

(
−β

(
− 1

β ln(1− y)
) 1−exp(−β)

x

)

if x > 0 and y > 1− exp(−β).

(iii) If we take the h-generator h3(x) = x−e
x−x2 for

an e ∈ (0,1), which is a family of additive
generators of uninorms with neutral element e,
we obtain the following family of implications
Ih3,e(x,y) =

=




1 if x = 0,√
(xy−ex)2+(ey−ey2)·(xy−ex)·(4e−2)+(ey−ey2)2

2·(xy−ex) +

+ ey−ey2−xy+ex
−2·(xy−ex) if x > 0 and y ≤ e,√

(ey−e2)2+(ey−e2)·(xy−xy2)·(4e−2)+(xy−xy2)2

2·(ey−e2)
+

+ xy−xy2−ey+e2

−2·(ey−e2)
if x > 0 and y > e.

Next, we prove that the h-generator of an (h,e)-
implication is always unique up to a positive multi-
plicative constant piecewise.

Theorem 10. Let h1,h2 : [0,1] → [−∞,∞] be any
two h-generators with respect to a fixed e ∈ (0,1).
Then the following statements are equivalent:

(i) Ih1,e = Ih2,e.

(ii) There exist constants k,c ∈ (0,∞) such that
h2(x) = k ·h1(x) if x ∈ [0,e) and h2(x) = c ·h1(x)
if x ∈ [e,1].

Moreover, in this case constants k and c are respec-
tively given by

c = h2 ◦h−1
1 (1) and k =−h2 ◦h−1

1 (−1).

Proof. (i)⇒ (ii): Let h1,h2 be two h-generators of
an (h,e)-implication with Ih1,e(x,y) = Ih2,e(x,y) for
all x,y ∈ [0,1]. For any x ∈ (0,1)\{e}, we have that
if y ≤ e,

h−1
1

( x
e ·h1(y)

)
= h−1

2

( x
e ·h2(y)

)
⇔ h2 ◦h−1

1

( x
e ·h1(y)

)
= x

e ·h2 ◦h−1
1 (h1(y)),

and if y > e, we obtain

h−1
1 ( e

x ·h1(y)) = h−1
2

( e
x ·h2(y)

)
⇔ h2 ◦h−1

1

( e
x ·h1(y)

)
= e

x ·h2 ◦h−1
1 (h1(y)).

By the substitution f = h2 ◦ h−1
1 and z = h1(y)

for any y ∈ [0,1], we obtain

f
(x

e
· z
)
=

x
e
· f (z) for x∈ (0,1)\{e} and z∈ [−∞,0],

(1)
f
(e

x
· z
)
=

e
x
· f (z) for x∈ (0,1)\{e} and z∈ (0,∞],

(2)
where f : [−∞,∞]→ [−∞,∞] is a continuous strictly
increasing bijection with f (0) = 0. Taking z = −1
in (1), we have f

(
− x

e

)
= x

e · f (−1) for any x ∈
(0,1) \ {e}. Fix arbitrarily z ∈ (−∞,0). There ex-
ists x ∈ (0,1)\{e} such that x · z ∈ (−1,0)\{−e}.
Then we get from (1) that

f (z) = e
x · f

( x
e · z

)
= e

x ·
(
− x

e · z
)
· f (−1)

= z · (− f (−1)).

Now we have

h2 ◦h−1
1 (z′) = z′ · (−h2 ◦h−1

1 (−1)).

So
h2(x) = h1(x) · (−h2 ◦h−1

1 (−1)),

and denoting k =−h2 ◦h−1
1 (−1)> 0, then h2(x) =

k ·h1(x) for x ∈ (0,e). Note that for x = 0,e we also
have h2(x)= k ·h1(x) since h1(0)= h2(0)=−∞ and
h1(e) = h2(e) = 0. So, this is true for x ∈ [0,e].
On the other hand, substituting z= 1 in (2), we have
f
( e

x

)
= e

x · f (1) for any x ∈ (0,1)\{e}. Fix arbitrar-
ily z ∈ (0,∞). There exists x ∈ (0,1)\{e} such that
x
z ∈ (0,1)\{e}. Then we get from (2) that

f (z) =
x
e
· f

(e
x
· z
)
=

x
e
· e

x
· z · f (1) = z · f (1).

Now we have

h2 ◦h−1
1 (z′) = z′ · (h2 ◦h−1

1 (1)).

Consequently

h2(x) = h1(x) · (h2 ◦h−1
1 (1)),

and denoting c = h2 ◦ h−1
1 (1) > 0, then h2(x) =

c · h1(x) for x ∈ (e,1). Finally, it is clear that for
x = 1 we aso obtain h2(1) = c · h1(1) = ∞ and so,
this is true for x ∈ (e,1].
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(ii)⇒ (i): Let h1 be an h-generator and k,c∈ (0,∞).
Define h2 as follows

h2(x) =
{

k ·h1(x) if x ∈ [0,e],
c ·h1(x) if x ∈ (e,1].

Evidently, h2 is a well-defined h-generator. More-
over, for any z ∈ [−∞,∞],

h−1
2 (z) =

{
h−1

1

( z
k

)
if z ∈ [−∞,0],

h−1
1

( z
c

)
if z ∈ (0,∞].

Let us prove Ih2,e(x,y) = Ih1,e(x,y). First,
Ih2,e(0,y) = 1 = Ih1,e(x,y) for all y ∈ [0,1]. Now,
if x > 0 and y ≤ e,

Ih2,e(x,y) = h−1
2

( x
e ·h2(y)

)
= h−1

2

( x
e · k ·h1(y)

)

= h−1
1

(
x·k·h1(y)

e·k

)
= Ih1,e(x,y).

Finally, if x > 0 and y > e,

Ih2,e(x,y) = h−1
2

( e
x ·h2(y)

)
= h−1

2

( e
x · c ·h1(y)

)

= h−1
1

(
e·c·h1(y)

x·c

)
= Ih1,e(x,y).

Figure 1. Plots of some (h,e)-implications.

Figure 2. Plots of some (h,e)-implications with
generator h3

Remark 11. The previous result is not so strange.
While each one of f and g-generators is a unique
function satisfying some properties, an h-generator
can be considered as a piece-wise function of two
component functions with no other relation than the
point where their value is zero. In other words, an
h-generator is a piece-wise function of h1 in [0,e]
such that h1(0) =−∞ and h1(e) = 0 and h2 in [e,1]
such that h2(e) = 0 and h2(1) = +∞. So logically,
h-generators are unique up to a multiplicative con-
stant piecewise.

From the proof of the previous result, the fol-
lowing corollary is immediate.

Corollary 12. Let h1,h2 : [0,1] → [−∞,∞] be any
two h-generators with respect to a fixed e ∈ (0,1)
such that h2 ◦ h−1

1 (1) = −h2 ◦ h−1
1 (−1). Then the

with neutral element e = 1− exp(−β). From
this h-generator, we obtain the following impli-
cation

Ih2,e(x,y)=




1 if x = 0,

1− exp
(
−β

(
− 1

β ln(1− y)
) x

1−exp(−β)
)

if x > 0 and y ≤ 1− exp(−β),

1− exp

(
−β

(
− 1

β ln(1− y)
) 1−exp(−β)

x

)

if x > 0 and y > 1− exp(−β).

(iii) If we take the h-generator h3(x) = x−e
x−x2 for an

e ∈ (0,1), which is a family of additive gen-
erators of uninorms with neutral element e,
we obtain the following family of implications
Ih3,e(x,y) =

=




1 if x = 0,√
(xy−ex)2+(ey−ey2)·(xy−ex)·(4e−2)+(ey−ey2)2

2·(xy−ex) +

+ ey−ey2−xy+ex
−2·(xy−ex) if x > 0 and y ≤ e,√

(ey−e2)2+(ey−e2)·(xy−xy2)·(4e−2)+(xy−xy2)2

2·(ey−e2)
+

+ xy−xy2−ey+e2

−2·(ey−e2)
if x > 0 and y > e.

Next, we prove that the h-generator of an (h,e)-
implication is always unique up to a positive multi-
plicative constant piecewise.

Theorem 10. Let h1,h2 : [0,1]→ [−∞,∞] be any two
h-generators with respect to a fixed e ∈ (0,1). Then
the following statements are equivalent:

(i) Ih1,e = Ih2,e.

(ii) There exist constants k,c ∈ (0,∞) such that
h2(x) = k ·h1(x) if x∈ [0,e) and h2(x) = c ·h1(x)
if x ∈ [e,1].

Moreover, in this case constants k and c are respec-
tively given by

c = h2 ◦h−1
1 (1) and k =−h2 ◦h−1

1 (−1).

(a) Ih1,e

(b) Ih2,e with β = 1

Figure 1: Plots of some (h,e)-implications.

Proof. (i) ⇒ (ii): Let h1,h2 be two h-generators of
an (h,e)-implication with Ih1,e(x,y) = Ih2,e(x,y) for
all x,y ∈ [0,1]. For any x ∈ (0,1)\{e}, we have that
if y ≤ e,

h−1
1

( x
e ·h1(y)

)
= h−1

2

( x
e ·h2(y)

)
⇔ h2 ◦h−1

1

( x
e ·h1(y)

)
= x

e ·h2 ◦h−1
1 (h1(y)),

and if y > e, we obtain

h−1
1 ( e

x ·h1(y)) = h−1
2

( e
x ·h2(y)

)
⇔ h2 ◦h−1

1

( e
x ·h1(y)

)
= e

x ·h2 ◦h−1
1 (h1(y)).

By the substitution f = h2◦h−1
1 and z= h1(y) for any

6

(a) Ih3,e with e = 0.25

(b) Ih3,e with e = 0.75

Figure 2: Plots of some (h,e)-implications with gen-
erator h3

y ∈ [0,1], we obtain

f
(x

e
· z
)
=

x
e
· f (z) for x∈ (0,1)\{e} and z∈ [−∞,0],

(1)
f
(e

x
· z
)
=

e
x
· f (z) for x ∈ (0,1)\{e} and z ∈ (0,∞],

(2)
where f : [−∞,∞]→ [−∞,∞] is a continuous strictly
increasing bijection with f (0) = 0. Taking z =−1 in
(1), we have f

(
− x

e

)
= x

e · f (−1) for any x ∈ (0,1)\
{e}. Fix arbitrarily z ∈ (−∞,0). There exists x ∈
(0,1)\{e} such that x · z ∈ (−1,0)\{−e}. Then we

get from (1) that

f (z) = e
x · f

( x
e · z

)
= e

x ·
(
− x

e · z
)
· f (−1)

= z · (− f (−1)).

Now we have

h2 ◦h−1
1 (z′) = z′ · (−h2 ◦h−1

1 (−1)).

So
h2(x) = h1(x) · (−h2 ◦h−1

1 (−1)),

and denoting k = −h2 ◦ h−1
1 (−1) > 0, then h2(x) =

k ·h1(x) for x ∈ (0,e). Note that for x = 0,e we also
have h2(x) = k ·h1(x) since h1(0) = h2(0) =−∞ and
h1(e) = h2(e) = 0. So, this is true for x ∈ [0,e].
On the other hand, substituting z = 1 in (2), we have
f
( e

x

)
= e

x · f (1) for any x ∈ (0,1)\{e}. Fix arbitrar-
ily z ∈ (0,∞). There exists x ∈ (0,1) \ {e} such that
x
z ∈ (0,1)\{e}. Then we get from (2) that

f (z) =
x
e
· f

(e
x
· z
)
=

x
e
· e

x
· z · f (1) = z · f (1).

Now we have

h2 ◦h−1
1 (z′) = z′ · (h2 ◦h−1

1 (1)).

Consequently

h2(x) = h1(x) · (h2 ◦h−1
1 (1)),

and denoting c = h2 ◦ h−1
1 (1) > 0, then

h2(x) = c ·h1(x) for x ∈ (e,1). Finally, it is clear that
for x = 1 we aso obtain h2(1) = c ·h1(1) = ∞ and so,
this is true for x ∈ (e,1].

(ii)⇒ (i): Let h1 be an h-generator and k,c ∈ (0,∞).
Define h2 as follows

h2(x) =
{

k ·h1(x) if x ∈ [0,e],
c ·h1(x) if x ∈ (e,1].

7
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(ii)⇒ (i): Let h1 be an h-generator and k,c∈ (0,∞).
Define h2 as follows

h2(x) =
{

k ·h1(x) if x ∈ [0,e],
c ·h1(x) if x ∈ (e,1].

Evidently, h2 is a well-defined h-generator. More-
over, for any z ∈ [−∞,∞],

h−1
2 (z) =

{
h−1

1

( z
k

)
if z ∈ [−∞,0],

h−1
1

( z
c

)
if z ∈ (0,∞].

Let us prove Ih2,e(x,y) = Ih1,e(x,y). First,
Ih2,e(0,y) = 1 = Ih1,e(x,y) for all y ∈ [0,1]. Now,
if x > 0 and y ≤ e,

Ih2,e(x,y) = h−1
2

( x
e ·h2(y)

)
= h−1

2

( x
e · k ·h1(y)

)

= h−1
1

(
x·k·h1(y)

e·k

)
= Ih1,e(x,y).

Finally, if x > 0 and y > e,

Ih2,e(x,y) = h−1
2

( e
x ·h2(y)

)
= h−1

2

( e
x · c ·h1(y)

)

= h−1
1

(
e·c·h1(y)

x·c

)
= Ih1,e(x,y).

Figure 1. Plots of some (h,e)-implications.

Figure 2. Plots of some (h,e)-implications with
generator h3

Remark 11. The previous result is not so strange.
While each one of f and g-generators is a unique
function satisfying some properties, an h-generator
can be considered as a piece-wise function of two
component functions with no other relation than the
point where their value is zero. In other words, an
h-generator is a piece-wise function of h1 in [0,e]
such that h1(0) =−∞ and h1(e) = 0 and h2 in [e,1]
such that h2(e) = 0 and h2(1) = +∞. So logically,
h-generators are unique up to a multiplicative con-
stant piecewise.

From the proof of the previous result, the fol-
lowing corollary is immediate.

Corollary 12. Let h1,h2 : [0,1] → [−∞,∞] be any
two h-generators with respect to a fixed e ∈ (0,1)
such that h2 ◦ h−1

1 (1) = −h2 ◦ h−1
1 (−1). Then the

ON SOME PROPERTIES OF . . .

following statements are equivalent:

(i) Ih1,e = Ih2,e.

(ii) There exists a constant c ∈ (0,∞) such that
h2(x) = c ·h1(x) for all x ∈ [0,1].

3.1 Basic Properties

From now on, we study which properties are
satisfied by the (h,e)-implications. The first re-
sult deals with the natural negation associated to an
(h,e)-implication.

Proposition 13. If h is an h-generator with respect
to a fixed e ∈ (0,1), then the natural negation of Ih,e

is the Gödel negation ND1 , that is

ND1(x) =
{

1 if x = 0,
0 if x > 0,

which is not continuous.

Proof.

NIh,e(x) = Ih,e(x,0) =
{

Ih,e(0,0) if x = 0,
h−1

( x
e ·h(0)

)
if x > 0,

=

{
1 if x = 0,
h−1(−∞) if x > 0,

=

{
1 if x = 0,
0 if x > 0,

= ND1(x).

Remark 14. Note that (h,e)-implications in-
troduced here are completely different from h-
generated implications introduced by J. Balasub-
ramaniam in [6, 7] (see also Definition 2.2). Do
not forget that the generator h of h-generated im-
plications is a multiplicative generator of a con-
tinuous Archimedean t-conorm, whereas for (h,e)-
implications introduced here, h is a generator of a
representable uninorm. Thus, they do not satisfy
the same properties. A first example is given by the
previous proposition since the natural negation of
any h-generated implication is always a continuous
fuzzy negation, that even can be strong depending
on the generator h (see [6]). Other differences lie
in properties (i),(ii),(v),(vi),(vii) and (x) in next
theorem.

Theorem 15. Let h be an h-generator with respect
to a fixed e ∈ (0,1).

(i) Ih,e does not satisfy (NP),

(ii) Ih,e satisfies (NPe),

(iii) Ih,e satisfies (EP),

(iv) Ih,e(x,x) = 1 if and only if x = 0 or x = 1, i.e.,
Ih,e does not satisfy (IP),

(v) Ih,e(x,y) = 1 if and only if x = 0 or y = 11, i.e.,
Ih,e does not satisfy (OP),

(vi) Ih,e does not satisfy (CP) with any fuzzy nega-
tion,

(vii) Ih,e is continuous except at the points (0,y) with
y ≤ e,

(viii) Ih,e(·,y) is one-to-one for all y ∈ (0,1)\{e},

(ix) Ih,e(x, ·) has range [0,1] for all x ∈ (0,1].

(x) Ih,e(x,y)< e if x > 0 and y < e,
Ih,e(x,e) = e if x > 0,
Ih,e(x,y)> e if x > 0 and y > e.

Proof. For points (i)-(vii) see Proposition 9 and
Theorem 13 in [29]. So let us only prove points
(viii)-(x).
(viii) First of all, if x1 = 0 < x2, Ih,e(0,y) = 1 >
Ih,e(x2,y) for all y ∈ (0,1)\{e} using (v). Next let
us consider 0 < y < e and 0 < x1 < x2, then since
−∞ < h(y)< 0 and h−1 is strictly increasing we get

Ih,e(x1,y) = h−1
( x1

e ·h(y)
)
> h−1

( x2
e ·h(y)

)
= Ih,e(x2,y).

Now let us consider e < y < 1 and 0 < x1 < x2, then
since 0 < h(y)< ∞ and h−1 is strictly increasing we
get

Ih,e(x1,y) = h−1
(

e
x1
·h(y)

)
> h−1

(
e
x2
·h(y)

)

= Ih,e(x2,y).

(ix) The vertical sections of Ih,e are continuous for
all x ∈ (0,1] by (vii). In addition, for all x ∈ (0,1]
Ih,e(x,0) = NIh,e(x) = 0 and Ih,e(x,1) = 1. There-
fore, vertical sections have range [0,1].
(x) If x > 0, we have

Ih,e(x,e) = h−1
(x

e
·h(e)

)
= h−1(0) = e.

1This property is studied in detail in [8] where it is shown that such property is essential for the construction of strong equality
indexes.
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Moreover, if x > 0 and y < e, then h(y)< 0 and we
get

Ih,e(x,y) = h−1
(x

e
·h(y)

)
< h−1(0) = e.

Finally, if x > 0 and y > e, then h(y) > 0 and we
obtain

Ih,e(x,y) = h−1
(e

x
·h(y)

)
> h−1(0) = e.

Remark 16. Point (x) in the previous result shows
that these implications allow to have a degree of
control of the increasingness with respect to the sec-
ond variable of the fuzzy implication.

3.2 The Law of Importation

Recently, the satisfaction of the law of impor-
tation has been studied deeply for the most com-
mon classes of fuzzy implications (see [18], [25],
[26]). Even its relationship with other properties of
fuzzy implications like (EP) and (WLI), a weaker
version of the law of importation has been estab-
lished (see [28]). Whereas Yager’s implications and
h-implications satisfy the law of importation with
the product t-norm TP, (h,e)-implications act in a
total different way.

Proposition 17.(see Proposition 15 in [29]) Let h be
an h-generator, then Ih,e does not satisfy (WLI) with
any F : [0,1]2 → [0,1] and consequently, it does not
satisfy (LI) with any t-norm.

Remark 18. In [28], there are examples of func-
tions F : [0,1]2 → [0,1] and of fuzzy implications
I that satisfy (EP) but neither (LI) nor (WLI) with
the function F . This fact proves that (LI), and even
(WLI), are stronger properties than (EP). By the
previous result, we add a whole family of fuzzy im-
plications to this divergence.

4 Distributivity Properties

Distributivity of fuzzy implications over differ-
ent fuzzy connectives is an important topic in fuzzy
logic. The peak of this interest started by Combs
and Andrews in [12] where they use a distributiv-
ity classical tautology in order to reduce the com-
plexity of fuzzy “If-Then” rules. After that, many
authors have dealt with them (see [32], [33], [34]).
From the four basic distributive equations involv-
ing an implication, that are tautologies in classical

logic, the following generalizations in fuzzy logic
are obtained:

I(S(x,y),z) = T (I(x,z), I(y,z)) (3)

I(T (x,y),z) = S(I(x,z), I(y,z)) (4)

I(x,T1(y,z)) = T2(I(x,y), I(x,z)) (5)

I(x,S1(y,z)) = S2(I(x,y), I(x,z)) (6)

for x,y,z ∈ [0,1], where I is a fuzzy implication,
T , T1, T2 are t-norms and S, S1, S2 are t-conorms.

So in this section, the main goal is to study
the distributivity of (h,e)-implications over t-norms
and t-conorms, by studying the satisfaction of
Equations (3)-(6).

4.1 On the Equation I(S(x,y),z) =
T (I(x,z), I(y,z))

Let us begin with some necessary conditions for
a t-norm and a t-conorm to satisfy Equation (3) with
a binary function satisfying some minimal proper-
ties.

Proposition 19. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1],
T a t-norm and S a t-conorm. If the triple (I,T,S)
satisfies (3) for all x,y,z ∈ [0,1], then T = TM .

Proof. Consider x = y = 1 in (3), we get I(1,z) =
T (I(1,z), I(1,z)) and consequently, I(1,z) must be
an idempotent element of T for all z ∈ [0,1]. How-
ever, since I(1,z) has range [0,1], T = TM, the only
idempotent t-norm.

Proposition 20. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1]
and I(·,z0) is one-to-one for some z0 ∈ [0,1). If
the triple (I,T,S), where T is a t-norm and S a
t-conorm, satisfies (3) for all x,y,z ∈ [0,1], then
S = SM .

Proof. The previous proposition implies that (3) is
reduced to

I(S(x,y),z) = min{I(x,z), I(y,z)}.

Taking x = y and z = z0 in this equation, we obtain
I(S(x,x),z0) = I(x,z0). Since I(·,z0) is one-to-one,
S(x,x) = x for all x ∈ [0,1] and then S = SM .

Joining the two previous results we obtain the
following corollary
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Moreover, if x > 0 and y < e, then h(y)< 0 and we
get

Ih,e(x,y) = h−1
(x

e
·h(y)

)
< h−1(0) = e.

Finally, if x > 0 and y > e, then h(y) > 0 and we
obtain

Ih,e(x,y) = h−1
(e

x
·h(y)

)
> h−1(0) = e.

Remark 16. Point (x) in the previous result shows
that these implications allow to have a degree of
control of the increasingness with respect to the sec-
ond variable of the fuzzy implication.

3.2 The Law of Importation

Recently, the satisfaction of the law of impor-
tation has been studied deeply for the most com-
mon classes of fuzzy implications (see [18], [25],
[26]). Even its relationship with other properties of
fuzzy implications like (EP) and (WLI), a weaker
version of the law of importation has been estab-
lished (see [28]). Whereas Yager’s implications and
h-implications satisfy the law of importation with
the product t-norm TP, (h,e)-implications act in a
total different way.

Proposition 17.(see Proposition 15 in [29]) Let h be
an h-generator, then Ih,e does not satisfy (WLI) with
any F : [0,1]2 → [0,1] and consequently, it does not
satisfy (LI) with any t-norm.

Remark 18. In [28], there are examples of func-
tions F : [0,1]2 → [0,1] and of fuzzy implications
I that satisfy (EP) but neither (LI) nor (WLI) with
the function F . This fact proves that (LI), and even
(WLI), are stronger properties than (EP). By the
previous result, we add a whole family of fuzzy im-
plications to this divergence.

4 Distributivity Properties

Distributivity of fuzzy implications over differ-
ent fuzzy connectives is an important topic in fuzzy
logic. The peak of this interest started by Combs
and Andrews in [12] where they use a distributiv-
ity classical tautology in order to reduce the com-
plexity of fuzzy “If-Then” rules. After that, many
authors have dealt with them (see [32], [33], [34]).
From the four basic distributive equations involv-
ing an implication, that are tautologies in classical

logic, the following generalizations in fuzzy logic
are obtained:

I(S(x,y),z) = T (I(x,z), I(y,z)) (3)

I(T (x,y),z) = S(I(x,z), I(y,z)) (4)

I(x,T1(y,z)) = T2(I(x,y), I(x,z)) (5)

I(x,S1(y,z)) = S2(I(x,y), I(x,z)) (6)

for x,y,z ∈ [0,1], where I is a fuzzy implication,
T , T1, T2 are t-norms and S, S1, S2 are t-conorms.

So in this section, the main goal is to study
the distributivity of (h,e)-implications over t-norms
and t-conorms, by studying the satisfaction of
Equations (3)-(6).

4.1 On the Equation I(S(x,y),z) =
T (I(x,z), I(y,z))

Let us begin with some necessary conditions for
a t-norm and a t-conorm to satisfy Equation (3) with
a binary function satisfying some minimal proper-
ties.

Proposition 19. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1],
T a t-norm and S a t-conorm. If the triple (I,T,S)
satisfies (3) for all x,y,z ∈ [0,1], then T = TM .

Proof. Consider x = y = 1 in (3), we get I(1,z) =
T (I(1,z), I(1,z)) and consequently, I(1,z) must be
an idempotent element of T for all z ∈ [0,1]. How-
ever, since I(1,z) has range [0,1], T = TM, the only
idempotent t-norm.

Proposition 20. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1]
and I(·,z0) is one-to-one for some z0 ∈ [0,1). If
the triple (I,T,S), where T is a t-norm and S a
t-conorm, satisfies (3) for all x,y,z ∈ [0,1], then
S = SM .

Proof. The previous proposition implies that (3) is
reduced to

I(S(x,y),z) = min{I(x,z), I(y,z)}.

Taking x = y and z = z0 in this equation, we obtain
I(S(x,x),z0) = I(x,z0). Since I(·,z0) is one-to-one,
S(x,x) = x for all x ∈ [0,1] and then S = SM .

Joining the two previous results we obtain the
following corollary

ON SOME PROPERTIES OF . . .

Corollary 21. Let I be a fuzzy implication that sat-
isfies that I(1,z) has range [0,1] with z ∈ [0,1] and
I(·,z0) is one-to-one for some z0 ∈ [0,1), T a t-norm
and S a t-conorm. Then the following statements are
equivalent:

(i) The triple (I,T,S) satisfies (3) for all x,y,z ∈
[0,1].

(ii) S = SM and T = TM .

Proof. (i) implies (ii) by the two previous results.
Reciprocally, the result is guaranteed by Proposi-
tion 7.2.3 in [3].

Finally, by Theorem 3.1 points (viii) and (ix)
(h,e)-implications are a particular case and so we
have the following result:

Theorem 22. Let h be an h-generator, T a t-norm
and S a t-conorm. Then the following statements
are equivalent:

(i) The triple (Ih,e,T,S) satisfies (3) for all x,y,z ∈
[0,1].

(ii) S = SM and T = TM .

4.2 On the Equation I(T (x,y),z) =
S(I(x,z), I(y,z))

This case is almost dual to the previous one and
so the results follow in a similar way.

Proposition 23. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1],
T be a t-norm and S a t-conorm. If the triple (I,T,S)
satisfies (4) for all x,y,z ∈ [0,1], then S = SM.

Proof. Consider x = y = 1 in (4), we get I(1,z) =
S(I(1,z), I(1,z)) and consequently, I(1,z) must be
an idempotent element of S for all z ∈ [0,1]. How-
ever, since I(1,z) has range [0,1], S = SM , the only
idempotent t-conorm.

Proposition 24. Let I : [0,1]2 → [0,1] be a function
satisfying that I(1,z) has range [0,1] with z ∈ [0,1]
and I(·,z0) be one-to-one for some z0 ∈ [0,1). If
the triple (I,T,S), where T is a t-norm and S a
t-conorm, satisfies (4) for all x,y,z ∈ [0,1], then
T = TM .

Proof. The previous proposition implies that (4) is
reduced to

I(T (x,y),z) = max{I(x,z), I(y,z)}.

Taking x = y and z = z0 in this equation, we obtain
I(T (x,x),z0) = I(x,z0). Since I(·,z0) is one-to-one,
T (x,x) = x for all x ∈ [0,1] and then T = TM .

Joining the two previous results we obtain the
following corollary

Corollary 25. Let I be a fuzzy implication that sat-
isfies that I(1,z) has range [0,1] with z ∈ [0,1] and
I(·,z0) is one-to-one for some z0 ∈ [0,1), T a t-norm
and S a t-conorm. Then the following statements are
equivalent:

(i) The triple (I,T,S) satisfies (4) for all x,y,z ∈
[0,1].

(ii) S = SM and T = TM .

Proof. The proof is analogous to the one of Corol-
lary 4.1 using in this case Proposition 7.2.12 in [3].

Finally, (h,e)-implications are again a particu-
lar case using Theorem 3.1-(viii) and (ix).

Theorem 26. Let h be an h-generator, T a t-norm
and S a t-conorm. Then the following statements
are equivalent:

(i) The triple (Ih,e,T,S) satisfies (4) for all x,y,z ∈
[0,1].

(ii) S = SM and T = TM .

4.3 On the Equation I(x,T1(y,z)) =
T2(I(x,y), I(x,z))

First of all, the next result reduces the equation
to study because, under some assumptions, the in-
volved t-norms must be the same.

Proposition 27. Let T1, T2 be t-norms. If I :
[0,1]2 → [0,1] is any function that satisfies (NPe),
then T1 = T2 in (5).

Proof. It is sufficient to take x = e in (5) and apply
(NPe).

So, Equation (5) becomes

I(x,T (y,z)) = T (I(x,y), I(x,z)), x,y,z ∈ [0,1],
(7)

taking T = T1 = T2.

In this case, we do not give a complete char-
acterization of those (h,e)-implications satisfying
Equation (5). Note that such a characterization is
still an open problem also for f and g-generated
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implications. However, there are t-norms other
than TM for which an (h,e)-implication satisfies this
equation. To see this, let us begin with a necessary
condition for a t-norm to satisfy Equation (7) with
an (h,e)-implication.

Proposition 28. Let h be an h-generator and T a
t-norm. If (Ih,e,T ) satisfies (7) then e is an idempo-
tent element of T , i.e., T (e,e) = e, or T (e,e) = 0.

Proof. Take x > 0 and y = z = e in (7) then since
Ih,e(x,e) = e and T (e,e)≤ e we obtain

Ih,e(x,T (e,e)) = T (e,e)⇔
h−1

( x
e ·h(T (e,e))

)
= T (e,e)⇔

x
e ·h(T (e,e)) = h(T (e,e)).

This implies that h(T (e,e)) =−∞ or h(T (e,e)) = 0
and consequently, T (e,e)= 0 or T (e,e)= e, respec-
tively.

So there are two candidate values for T (e,e).
The next result shows that there are solutions of
Equation (7) for t-norms with T (e,e) = 0, just tak-
ing the drastic t-norm TD.

Proposition 29. Let h be an h-generator. Then, the
pair (Ih,e,TD) always satisfies Equation (7).

Proof. If x = 0,

Ih,e(0,TD(y,z)) = 1 = TD(1,1)
= TD(Ih,e(0,y), Ih,e(0,z)).

Otherwise, we consider two cases. If y,z < 1,
using that TD(y,z) = 0 and by Theorem 3.1-(v),
Ih,e(x,y), Ih,e(x,z)< 1, we obtain

Ih,e(x,TD(y,z)) = Ih,e(x,0) = ND1(x) = 0
= TD(Ih,e(x,y), Ih,e(x,z)).

Finally, if y = 1 (or equivalently, z = 1),

Ih,e(x,TD(1,z)) = Ih,e(x,z) = TD(1, Ih,e(x,z))
= TD(Ih,e(x,y), Ih,e(x,z)).

On the other hand, if we consider continuous
t-norms with T (e,e) = e, they are necessarily or-
dinal sums of the form ⟨(0,e,T ′),(e,1,T ′′)⟩ with
T ′ and T ′′ continuous t-norms. Among them the
next proposition shows three particular cases (dif-
ferent from minimum) that satisfy Equation (7) with
a fixed (h,e)-implication.

Proposition 30. Let h be an h-generator and T a
t-norm. Then Ih,e satisfies (7) if T = TM or T is one

of the following t-norms

T1(x,y) =
{

h−1(h(x)+h(y)) if (x,y) ∈ [0,e]2,
min{x,y} otherwise,

T2(x,y) =

{
h−1

(
h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [e,1]2,

min{x,y} otherwise,

T3(x,y)=




h−1(h(x)+h(y)) if (x,y) ∈ [0,e]2,

h−1
(

h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [e,1]2,

min{x,y} otherwise.

.

Note that the three last t-norms are ordinal sums
of T ′ and TM , TM and T ′′, T ′ and T ′′ respectively,
where T ′ and T ′′ are the Archimedean t-norms with
additive generators f (x) = −h(e · x) and g(x) =

1
h(e+(1−e)·x) respectively.

Proof. First of all, Ih,e satisfies (7) with T = TM

by Proposition 7.2.15 in [3]. Next let us prove that
Ih,e satisfies (7) with T = T1. If x = 0, the equa-
tion holds trivially. Otherwise, note that if y > e (or
equivalently z > e) then Ih,e(x,y) > e and we have
that
Ih,e(x,T1(y,z)) = Ih,e(x,TM(y,z)),
T1(Ih,e(x,y), Ih,e(x,z)) = TM(Ih,e(x,y), Ih,e(x,z))

and the result follows. Now if y,z ≤ e, since
T1(y,z)≤ e and Ih,e(x,y), Ih,e(x,z)≤ e we have that

Ih,e(x,T1(y,z)) = Ih,e(x,h−1(h(y)+h(z))) =
= h−1

( x
e ·h(h

−1(h(y)+h(z)))
)

= h−1
( x

e · (h(y)+h(z))
)

= h−1
(
h
(
h−1

( x
e ·h(y)

))
+h

(
h−1

( x
e ·h(z)

)))
= h−1(h(Ih,e(x,y))+h(Ih,e(x,z)))
= T1(Ih,e(x,y), Ih,e(x,z)).

Consider now T = T2. Again if x = 0, the equa-
tion holds trivially. Otherwise, note that if y ≤ e (or
equivalently z ≤ e) then Ih,e(x,y) ≤ e and we have
that
Ih,e(x,T2(y,z)) = Ih,e(x,TM(y,z)),
T2(Ih,e(x,y), Ih,e(x,z)) = TM(Ih,e(x,y), Ih,e(x,z))

and the result follows. Now if y,z > e,
since T2(y,z) > e because h(y)·h(z)

h(y)+h(z) > 0, and
Ih,e(x,y), Ih,e(x,z)> e we have that

Ih,e(x,T2(y,z)) = Ih,e
(

x,h−1
(

h(y)·h(z)
h(y)+h(z)

))
=

= h−1
(

e
x ·h

(
h−1

(
h(y)·h(z)
h(y)+h(z)

)))

= h−1
(

h(h−1( e
x ·h(y)))·h(h−1( e

x ·h(z)))
h(h−1( e

x ·h(y)))+h(h−1( e
x ·h(z)))

)

= h−1
(

h(Ih,e(x,y))·h(Ih,e(x,z))
h(Ih,e(x,y))+h(Ih,e(x,z))

)

= T2(Ih,e(x,y), Ih,e(x,z)).
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implications. However, there are t-norms other
than TM for which an (h,e)-implication satisfies this
equation. To see this, let us begin with a necessary
condition for a t-norm to satisfy Equation (7) with
an (h,e)-implication.

Proposition 28. Let h be an h-generator and T a
t-norm. If (Ih,e,T ) satisfies (7) then e is an idempo-
tent element of T , i.e., T (e,e) = e, or T (e,e) = 0.

Proof. Take x > 0 and y = z = e in (7) then since
Ih,e(x,e) = e and T (e,e)≤ e we obtain

Ih,e(x,T (e,e)) = T (e,e)⇔
h−1

( x
e ·h(T (e,e))

)
= T (e,e)⇔

x
e ·h(T (e,e)) = h(T (e,e)).

This implies that h(T (e,e)) =−∞ or h(T (e,e)) = 0
and consequently, T (e,e)= 0 or T (e,e)= e, respec-
tively.

So there are two candidate values for T (e,e).
The next result shows that there are solutions of
Equation (7) for t-norms with T (e,e) = 0, just tak-
ing the drastic t-norm TD.

Proposition 29. Let h be an h-generator. Then, the
pair (Ih,e,TD) always satisfies Equation (7).

Proof. If x = 0,

Ih,e(0,TD(y,z)) = 1 = TD(1,1)
= TD(Ih,e(0,y), Ih,e(0,z)).

Otherwise, we consider two cases. If y,z < 1,
using that TD(y,z) = 0 and by Theorem 3.1-(v),
Ih,e(x,y), Ih,e(x,z)< 1, we obtain

Ih,e(x,TD(y,z)) = Ih,e(x,0) = ND1(x) = 0
= TD(Ih,e(x,y), Ih,e(x,z)).

Finally, if y = 1 (or equivalently, z = 1),

Ih,e(x,TD(1,z)) = Ih,e(x,z) = TD(1, Ih,e(x,z))
= TD(Ih,e(x,y), Ih,e(x,z)).

On the other hand, if we consider continuous
t-norms with T (e,e) = e, they are necessarily or-
dinal sums of the form ⟨(0,e,T ′),(e,1,T ′′)⟩ with
T ′ and T ′′ continuous t-norms. Among them the
next proposition shows three particular cases (dif-
ferent from minimum) that satisfy Equation (7) with
a fixed (h,e)-implication.

Proposition 30. Let h be an h-generator and T a
t-norm. Then Ih,e satisfies (7) if T = TM or T is one

of the following t-norms

T1(x,y) =
{

h−1(h(x)+h(y)) if (x,y) ∈ [0,e]2,
min{x,y} otherwise,

T2(x,y) =

{
h−1

(
h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [e,1]2,

min{x,y} otherwise,

T3(x,y)=




h−1(h(x)+h(y)) if (x,y) ∈ [0,e]2,

h−1
(

h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [e,1]2,

min{x,y} otherwise.

.

Note that the three last t-norms are ordinal sums
of T ′ and TM , TM and T ′′, T ′ and T ′′ respectively,
where T ′ and T ′′ are the Archimedean t-norms with
additive generators f (x) = −h(e · x) and g(x) =

1
h(e+(1−e)·x) respectively.

Proof. First of all, Ih,e satisfies (7) with T = TM

by Proposition 7.2.15 in [3]. Next let us prove that
Ih,e satisfies (7) with T = T1. If x = 0, the equa-
tion holds trivially. Otherwise, note that if y > e (or
equivalently z > e) then Ih,e(x,y) > e and we have
that
Ih,e(x,T1(y,z)) = Ih,e(x,TM(y,z)),
T1(Ih,e(x,y), Ih,e(x,z)) = TM(Ih,e(x,y), Ih,e(x,z))

and the result follows. Now if y,z ≤ e, since
T1(y,z)≤ e and Ih,e(x,y), Ih,e(x,z)≤ e we have that

Ih,e(x,T1(y,z)) = Ih,e(x,h−1(h(y)+h(z))) =
= h−1

( x
e ·h(h

−1(h(y)+h(z)))
)

= h−1
( x

e · (h(y)+h(z))
)

= h−1
(
h
(
h−1

( x
e ·h(y)

))
+h

(
h−1

( x
e ·h(z)

)))
= h−1(h(Ih,e(x,y))+h(Ih,e(x,z)))
= T1(Ih,e(x,y), Ih,e(x,z)).

Consider now T = T2. Again if x = 0, the equa-
tion holds trivially. Otherwise, note that if y ≤ e (or
equivalently z ≤ e) then Ih,e(x,y) ≤ e and we have
that
Ih,e(x,T2(y,z)) = Ih,e(x,TM(y,z)),
T2(Ih,e(x,y), Ih,e(x,z)) = TM(Ih,e(x,y), Ih,e(x,z))

and the result follows. Now if y,z > e,
since T2(y,z) > e because h(y)·h(z)

h(y)+h(z) > 0, and
Ih,e(x,y), Ih,e(x,z)> e we have that

Ih,e(x,T2(y,z)) = Ih,e
(

x,h−1
(

h(y)·h(z)
h(y)+h(z)

))
=

= h−1
(

e
x ·h

(
h−1

(
h(y)·h(z)
h(y)+h(z)

)))

= h−1
(

h(h−1( e
x ·h(y)))·h(h−1( e

x ·h(z)))
h(h−1( e

x ·h(y)))+h(h−1( e
x ·h(z)))

)

= h−1
(

h(Ih,e(x,y))·h(Ih,e(x,z))
h(Ih,e(x,y))+h(Ih,e(x,z))

)

= T2(Ih,e(x,y), Ih,e(x,z)).

ON SOME PROPERTIES OF . . .

Finally, let us prove that Ih,e satisfies (7) with
T = T3. If x = 0, the equation holds trivially.
Otherwise, if y,z ≤ e, T3(y,z) = T1(y,z) and since
Ih,e(x,y), Ih,e(x,z)≤ e, we get

T3(Ih,e(x,y), Ih,e(x,z)) = T1(Ih,e(x,y), Ih,e(x,z))

and the result is straightforward. Now if y,z > e,
T3(y,z) = T2(y,z) and since Ih,e(x,y), Ih,e(x,z) > e,
we obtain

T3(Ih,e(x,y), Ih,e(x,z)) = T2(Ih,e(x,y), Ih,e(x,z))

and the result is clear. Otherwise, suppose y ≤ e < z
(equivalently z≤ e< y) T3(y,z) = TM(y,z) and since
Ih,e(x,y)≤ e < Ih,e(x,z) we have

T3(Ih,e(x,y), Ih,e(x,z)) = TM(Ih,e(x,y), Ih,e(x,z))

and the result follows.
Let us prove now that the three last t-norms are the
ordinal sums given in the statement. First, we are
going to prove that f (x) = −h(e · x) and g(x) =

1
h(e+(1−e)·x) are additive generators of Archimedean
t-norms. It is clear that they are continuous and
strictly decreasing functions since h is continuous
and strictly increasing. Now

f (0) =−h(0) = ∞
g(0) = 1

h(e) =
1
0 = ∞

f (1) =−h(e) = 0
g(1) = 1

h(1) =
1
∞ = 0.

If (x,y) ∈ [0,e]2 we have
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and if (x,y) ∈ [e,1]2 we get
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The result for T3 is now straightforward.
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Figure 3. t-norms T1, T2 and T3 which are solutions of
Equation (7) for a fixed (h,e)-implication Ih,e. T ′ and T ′′ are

the Archimedean t-norms with additive generators
f (x) =−h(e · x) and g(x) = 1

h(e+(1−e)·x) respectively

The three t-norms T1-T3 given in Proposition 4.3
can be viewed in Figure 3.
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4.4 On the Equation I(x,S1(y,z)) =
S2(I(x,y), I(x,z))

The behaviour of this case is again dual of the
previous one and thus all results follow similarly.

Proposition 31. Let S1, S2 be t-conorms. If I :
[0,1]2 → [0,1] is any function that satisfies (NPe),
then S1 = S2 in (6).

So, Equation (6) becomes taking S = S1 = S2

I(x,S(y,z)) = S(I(x,y), I(x,z)), x,y,z ∈ [0,1]. (8)

In this case also, there is not a complete char-
acterization of those (h,e)-implications satisfying
Equation (6), similarly as for f and g implications.
However, there are t-conorms other than SM for
which an (h,e)-implication satisfies this equation.
Again we have the following necessary condition.

Proposition 32. Let h be an h-generator and S a t-
norm. If (Ih,e,S) satisfies (8) then e is an idempotent
element of S, i.e., S(e,e) = e, or S(e,e) = 1.

Proof. Take x > 0 and y = z = e in (8) then since
Ih,e(x,e) = e we obtain

Ih,e(x,S(e,e)) = S(e,e).

Now if S(e,e) = e, the equality holds. Otherwise,
S(e,e)> e and in this case,

h−1
( e

x ·h(S(e,e))
)
= S(e,e)⇔

e
x ·h(S(e,e)) = h(S(e,e)).

This implies that h(S(e,e)) = ∞ and consequently,
S(e,e) = 1.

So there are two candidate values for S(e,e).
The next result shows that there are solutions of
Equation (8) for t-conorms with S(e,e) = 1, just
taking the drastic t-conorm SD.

Proposition 33. Let h be an h-generator. Then, the
pair (Ih,e,SD) always satisfies Equation (8).

Proof. If x = 0,

Ih,e(0,SD(y,z)) = 1 = SD(1,1)
= SD(Ih,e(0,y), Ih,e(0,z)).

Otherwise, we consider two cases. If y,z > 0, using
that SD(y,z) = 1 and since Ih,e(x,y), Ih,e(x,z)> 0 in
this case, we obtain

Ih,e(x,SD(y,z)) = Ih,e(x,1) = 1
= SD(1,1) = SD(Ih,e(x,y), Ih,e(x,z)).

Finally, if y = 0 (or equivalently, z = 0),

Ih,e(x,SD(0,z)) = Ih,e(x,z) = SD(0, Ih,e(x,z))
= SD(Ih,e(x,y), Ih,e(x,z)).

On the other hand, if S(e,e) = e we have the
following result:

Proposition 34. Let h be an h-generator and S a t-
conorm. Then Ih,e satisfies (8) if S = SM or S is one
of the following t-conorms

S1(x,y) =
{

h−1(h(x)+h(y)) if (x,y) ∈ [e,1]2,
max{x,y} otherwise,

S2(x,y) =

{
h−1

(
h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [0,e]2,

max{x,y} otherwise,

S3(x,y) =




h−1
(

h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [0,e]2,

h−1(h(x)+h(y)) if (x,y) ∈ [e,1]2,
max{x,y} otherwise.

Note that the three last t-conorms are ordinal sums
of SM and S′, S′′ and SM , S′ and S′′ respectively,
where S′ and S′′ are the Archimedean t-conorms
with additive generators f (x)= h(e+(1−e) ·x) and
g(x) = −1

h(e·x) respectively.

Proof. The proof is quite similar to the one of
Proposition 4.3.

5 Intersections with other Families

When a class of fuzzy implications is presented,
it is worth to study their intersections with the ex-
isting classes of fuzzy implications. Yager’s impli-
cations have not been an exception and their inter-
sections among themselves and with the most used
classes of implications were stated in [2] and more
recently in [30]. Whereas f - and g-implications
have non-trivial intersections with (S,N)- and R-
implications, Balasubramaniam’s h-generated im-
plications (see Definition 2.2) are contained in
the family of all (S,N)-implications obtained from
continuous negations (see [2]). With respect to
QL-implications, g-implications and f -implications
with f (0) = ∞ do not intersect with this class, how-
ever the intersection of f -implications generated
from a bounded generator with QL-implications is
non-trivial. From the properties studied above we
will see that (h,e)-implications are a new class of
fuzzy implications literally since they do not inter-
sect with any of the most used classes of implica-
tions.
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4.4 On the Equation I(x,S1(y,z)) =
S2(I(x,y), I(x,z))

The behaviour of this case is again dual of the
previous one and thus all results follow similarly.

Proposition 31. Let S1, S2 be t-conorms. If I :
[0,1]2 → [0,1] is any function that satisfies (NPe),
then S1 = S2 in (6).

So, Equation (6) becomes taking S = S1 = S2

I(x,S(y,z)) = S(I(x,y), I(x,z)), x,y,z ∈ [0,1]. (8)

In this case also, there is not a complete char-
acterization of those (h,e)-implications satisfying
Equation (6), similarly as for f and g implications.
However, there are t-conorms other than SM for
which an (h,e)-implication satisfies this equation.
Again we have the following necessary condition.

Proposition 32. Let h be an h-generator and S a t-
norm. If (Ih,e,S) satisfies (8) then e is an idempotent
element of S, i.e., S(e,e) = e, or S(e,e) = 1.

Proof. Take x > 0 and y = z = e in (8) then since
Ih,e(x,e) = e we obtain

Ih,e(x,S(e,e)) = S(e,e).

Now if S(e,e) = e, the equality holds. Otherwise,
S(e,e)> e and in this case,

h−1
( e

x ·h(S(e,e))
)
= S(e,e)⇔

e
x ·h(S(e,e)) = h(S(e,e)).

This implies that h(S(e,e)) = ∞ and consequently,
S(e,e) = 1.

So there are two candidate values for S(e,e).
The next result shows that there are solutions of
Equation (8) for t-conorms with S(e,e) = 1, just
taking the drastic t-conorm SD.

Proposition 33. Let h be an h-generator. Then, the
pair (Ih,e,SD) always satisfies Equation (8).

Proof. If x = 0,

Ih,e(0,SD(y,z)) = 1 = SD(1,1)
= SD(Ih,e(0,y), Ih,e(0,z)).

Otherwise, we consider two cases. If y,z > 0, using
that SD(y,z) = 1 and since Ih,e(x,y), Ih,e(x,z)> 0 in
this case, we obtain

Ih,e(x,SD(y,z)) = Ih,e(x,1) = 1
= SD(1,1) = SD(Ih,e(x,y), Ih,e(x,z)).

Finally, if y = 0 (or equivalently, z = 0),

Ih,e(x,SD(0,z)) = Ih,e(x,z) = SD(0, Ih,e(x,z))
= SD(Ih,e(x,y), Ih,e(x,z)).

On the other hand, if S(e,e) = e we have the
following result:

Proposition 34. Let h be an h-generator and S a t-
conorm. Then Ih,e satisfies (8) if S = SM or S is one
of the following t-conorms

S1(x,y) =
{

h−1(h(x)+h(y)) if (x,y) ∈ [e,1]2,
max{x,y} otherwise,

S2(x,y) =

{
h−1

(
h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [0,e]2,

max{x,y} otherwise,

S3(x,y) =




h−1
(

h(x)·h(y)
h(x)+h(y)

)
if (x,y) ∈ [0,e]2,

h−1(h(x)+h(y)) if (x,y) ∈ [e,1]2,
max{x,y} otherwise.

Note that the three last t-conorms are ordinal sums
of SM and S′, S′′ and SM , S′ and S′′ respectively,
where S′ and S′′ are the Archimedean t-conorms
with additive generators f (x)= h(e+(1−e) ·x) and
g(x) = −1

h(e·x) respectively.

Proof. The proof is quite similar to the one of
Proposition 4.3.

5 Intersections with other Families

When a class of fuzzy implications is presented,
it is worth to study their intersections with the ex-
isting classes of fuzzy implications. Yager’s impli-
cations have not been an exception and their inter-
sections among themselves and with the most used
classes of implications were stated in [2] and more
recently in [30]. Whereas f - and g-implications
have non-trivial intersections with (S,N)- and R-
implications, Balasubramaniam’s h-generated im-
plications (see Definition 2.2) are contained in
the family of all (S,N)-implications obtained from
continuous negations (see [2]). With respect to
QL-implications, g-implications and f -implications
with f (0) = ∞ do not intersect with this class, how-
ever the intersection of f -implications generated
from a bounded generator with QL-implications is
non-trivial. From the properties studied above we
will see that (h,e)-implications are a new class of
fuzzy implications literally since they do not inter-
sect with any of the most used classes of implica-
tions.

ON SOME PROPERTIES OF . . .

First of all, note that (h,e)-implications do not
satisfy (NP) and consequently, they do not intersect
with (S,N), R, QL, D-implications or Yager’s impli-
cations because all these families satisfy this prop-
erty (see [3]).

Proposition 35. If h is an h-generator, then Ih,e is
neither an (S,N)-, R-, QL-, D- nor a Yager’s impli-
cation.

The previous result is coherent since (h,e)-
implications are more related to implications de-
rived from uninorms as they satisfy (NPe). How-
ever, they do not intersect (U,N)-implications with
N a strict negation and RU-implications because
these two types of implications satisfy the law of
importation with some uninorm (see [26]) whereas
(h,e)-implications do not satisfy even (WLI). In
addition, there is also no intersection with (U,N)-
implications with N just continuous because they
satisfy (WLI) with some function F (see [28]). Fur-
thermore, there are no intersections neither with
QLU nor DU-implications because the first ones
only satisfy the exchange principle when they are
in fact QL-implications and the second ones satisfy
(NP) (see [24]). Finally, they do not intersect e-
and pseudo-e-implications (see [20]) because (h,e)-
implications do not satisfy I(x,x) = e for all x ∈
(0,1), an axiom of those classes of implications.

Proposition 36. If h is an h-generator, then Ih,e

is neither an (U,N)-implication with N continuous,
RU , QLU-, DU-, e nor pseudo-e-implication.

6 Conclusion

We have presented and studied in detail a new
class of implications, called (h,e)-implications, in
a similar way to Yager’s and Balasubramaniam’s
implications. They are generated from an addi-
tive generator of a representable uninorm, i.e., from
a continuous and strictly increasing function h :
[0,1]2 → [−∞,∞] with h(0) = −∞, h(1) = ∞ and
h(e) = 0 for a fixed e ∈ (0,1). We studied the most
common properties that can be satisfied by a class
of fuzzy implications. The most interesting ones are
the exchange principle (EP) and some distributive
properties with respect to t-norms and t-conorms,
that are useful in order to avoid combinatorial rule
explosion in fuzzy systems (see [12, 34]). More-
over, we have proved that they do not satisfy either

the contrapositive symmetry with any negation N,
or the law of importation with any t-norm (even the
weak law of importation is not satisfied with any
function F). So, due to the fact that they satisfy
(EP), they constitute a whole class of implications
supporting the non-equivalence between (EP) and
(LI) (see [22] and [28]). In addition, the intersec-
tions with the most usual classes of implications
have been studied. Thus, we proved that (h,e)-
implications are a new class of implications since
they do not intersect with any of the existing classes.
However, some questions remain open:

– Is there any relation between (h,e)-implications
and Yager’s implications that could lead us to
characterize this new class of implications?

– Characterize all the t-norms and t-conorms that
are solutions of Equation (7) and Equation (8)
for a fixed (h,e)-implication. Recall that this is
also an open problem for Yager’s implications.
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[2] M. Baczyński and B. Jayaram. Yager’s classes of
fuzzy implications: some properties and intersec-
tions. Kybernetika, 43:157–182, 2007.
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