PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity analysis of the effect of airflow velocity on the thermal comfort in underground mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Displeasure in respect to air volumes and associated airflow velocities are well-documented complaints in underground mines. The complaints often differ in the form that there is too little airflow velocity or too much. In hot and humid climates such as those prevailing in many underground mines, convection heat transfer is the major mode of heat rejection from the human body, through the process of sweat evaporation. Consequently, the motion of the mine air plays a pivotal role in aiding this process. In this paper, a method was developed and adopted in the form of a “comfort model” to predict the optimum airflow velocity required to maintain heat comfort for the underground workforce at different activity levels (e.g. metabolic rates). Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wetness. Tolerable worker heat exposure times were also predicted in order to minimize thermal strain due to dehydration. The results indicate that an airflow velocity in the range of 1 e2 m/s is the ideal velocity in order to provide a stress/strain free climate and also guarantee thermal comfort for the workers. Therefore, an optimal airflow velocity of 1.5 m/s for the miners' thermal comfort is suggested.
Rocznik
Strony
175--180
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Mining Engineering Department, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
autor
  • Mining Engineering Department, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
autor
  • Mining Engineering Department, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
Bibliografia
  • Berglund, L. G., & Fobelets, A. P. (1987). Subjective human response to low-level air currents and asymmetric radiation. ASHRAE Transactions, 93, 497-523.
  • Brake, D. J., & Bates, G. P. (2002). Limiting metabolic rate (thermal work limit) as an index of thermal stress. Applied Occupational and Environmental Hygiene, 17(3), 176-186.
  • Büttner, K. (1954). Thermal comfort as a criterion for the classification of climates. In Recent studies in bioclimatology. AMS. J (pp. 99-103).
  • Cándido, C., de Dear, R. J., Lamberts, R., & Bittencourt, L. (2010). Air movement acceptability limits and thermal comfort in Brazil's hot, humid climate zone. Building and Environment, 45(1), 222-229.
  • Carpenter, K., Roghanchi, P., & Kocsis, C. K. (2015). Investigating the importance of climatic monitoring and modeling in deep and hot US underground mines. In 15th Northern American mining ventilation symposium (pp. 20-25). Blacksburg: VA.
  • Christensen, N. K., Albrechtsen, O., Fanger, P. O., & Trzeciakiewicz, A. (1984). Air movement and draught. In B. Berglund, T. Lindvall, & J. Sundell (Eds.), Vol. 5. Indoor air. Proceedings of the 3rd International conference on indoor air quality and climate (pp. 301-308). Stockholm, Sweden: Swedish Council for Building Research.
  • Coleman, P. J., & Kerkering, J. C. (2007). Measuring mining safety with injury statistics: Lost workdays as indicators of risk. Journal of Safety Research, 38(5), 523-533.
  • Donoghue, A. M. (2004). Heat illness in the US mining industry. American Journal of Industrial Medicine, 45(4), 351-356.
  • Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press.
  • Fanger, P. O., & Christensen, N. K. (1986). Perception of draught in ventilated spaces. Ergonomics, 29(2), 215-235.
  • Fanger, P. O., & Pedersen, C. K. (1977). Discomfort due to air velocities in spaces. In Proceedings of the meeting of commission B (Vol. 1, p. B2).
  • Fountain, M., & Arens, E. A. (1993). Air movement and thermal comfort. ASHRAE Journal, 35(8), 26-30.
  • Griefahn, B., Mehnert, P., Bröde, P., & Forsthoff, A. (1997).Working in moderate cold: A possible risk to health. Journal of Occupational Health, 39(1), 36-44.
  • Hartman, H. L., Mutmansky, J. M., Ramani, R. V., &Wang, Y. J. (2012). Mine ventilation and air conditioning. New York: John Wiley & Sons.
  • Holm, D., & Engelbrecht, F. (2005). Practical choice of thermal comfort scale. Journal of the South African Institution of Civil Engineering, 47(2), 9-14.
  • Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75.
  • Houghton, F. C., & Yaglou, C. P. (1923). Determining equal comfort lines. Journal of ASHVE, 29, 165-176.
  • Humphreys, M. A. (1977). The optimum diameter for a globe thermometer for use indoors. Annals of Occupational Hygiene, 20(2), 135-140.
  • ISO 7730. (2005). Ergonomics of the thermal environment d analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
  • ISO 7933. (1989). Hot environments - analytical determination and interpretation of thermal stress using calculation of required sweat rate.
  • ISO 7933. (2004). Ergonomics of the thermal environment - analytical determination and interpretation of heat stress using calculation of the predicted heat strain.
  • Jacklitsch, B., Musolin, K., & Kim, J. H. (2016). Criteria for a recommended standard: Occupational exposure to heat and hot environments, Publication No. 2016-106. US: National Institute for Occupational Safety & Health (NIOSH).
  • Kocsis, C. K., & Hardcastle, S. G. (2010). Prediction and analysis of the underground climatic conditions and their cause in deep mechanized Canadian metal mines. In S. Hardcastle, & D. L. McKinnon (Eds.), 13th U.S/North American mine ventilation symposium June 13-16, Sudbury, Ontario, Canada (pp. 323-332). Ontario: Laurentian University.
  • Kurnia, J. C., Sasmito, A. P., & Mujumdar, A. S. (2014). Dust dispersion and management in underground mining faces. International Journal of Mining Science and Technology, 24(1), 39-44.
  • MacPherson, M. J. (2009). Subsurface ventilation engineering, mine ventilation services. California: Inc. Fresno.
  • Mairiaux, P., Malchaire, J., & Candas, V. (1987). Prediction of mean skin temperaturę in warm environment. European Journal of Applied Physiology and Occupational Physiology, 56(6), 686-692.
  • Malchaire, J. B., Kampmann, B., Havenith, G., Mehnert, P., & Gebhardt, H. J. (2000). Criteria for estimating acceptable exposure times. International Archives of Occupational and Environmental Health, 73(4), 215-220.
  • McIntyre, D. A. (1979). The effect of air movement on thermal comfort and sensation. Copenhagen: Indoor Climate, Danish Building Research Institute.
  • Nevins, R. G. (1971). Thermal comfort and draughts. Journal of Physiology, 3, 356-358.
  • Parsons, K. (2014). Human thermal environments: The effects of hot, moderate, and cold environments on human health, comfort, and performance (3rd ed.). New York: CRC Press.
  • Rohles, F. H., Konz, S. A., & Jones, B. W. (1983). Ceiling fans as extenders of the summer comfort envelope. ASHRAE Transaction, 89(1), 245-263.
  • Saleh, J. H., & Cummings, A. M. (2011). Safety in the mining industry and the unfinished legacy of mining accidents: Safety levers and defense-in-depth for addressing mining hazards. Safety Science, 49(6), 764-777.
  • Sheer, T. J., Butterworth, M. D., & Ramsden, R. (2001). Ice as a coolant for deep mines. In Proceedings of the 7th International Mine Ventilation Congress (pp. 355-361).
  • Spain, R. S. (1984). Energy savings in buildings using fans and allowing floating temperatures in rooms. Ph.D. Dissertation. Gcva: Texas A&M University.
  • Toftum, J. (2002). Human response to combined indoor environment exposures. Energy and Building, 34(6), 601-606.
  • Xiaojie, Y., Qiaoyun, H., Jiewen, P., Xiaowei, S., Dinggui, H., & Chao, L. (2011). Progress of heat-hazard treatment in deep mines. Mining Science and Technology (China), 21(2), 295-299.
  • Zhou, G. (1999). Human perception of air movement: Impact of frequency and airflow direction on sensation of draught. Ph.D. Thesis. Kongens Lyngby: Technical University of Denmark.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4095f99f-31da-4e46-8db5-7899879ba4d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.