Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The large deviation problem for sums of i.i.d. random vectors is considered. It is assumed that the underlying distribution is absolutely continuous and its density is of regular variation. An asymptotic expression for the probability of large deviations is established in the case of a non-normal stable limit law. The role of the maximal summand is also emphasized.
Czasopismo
Rocznik
Tom
Strony
323--335
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
- [1] A. Aleskjavičene, Limit theorems for large deviations (in Russian), Litovsk. Mat. Sb. 2 (2) (1962), pp. 5-13.
- [2] L. A. Anorina and A. V. Nagaev, An integral limit theorem for sums of independent two-dimensional random vectors with allowance for large deviations in the case when Cramer's condition is not satisfied (in Russian), in: Stochastic Processes and Related Problems 2, "Fan", Tashkent 1971, pp. 3-11.
- [3] B. von Bahr, Multi-dimensional integral limit theorems for large deviations, Ark. Mat. 7 (1967), pp. 89-99.
- [4] A. A. Borovkov and B. A. Rogozin, On the central limit theorem in the higher-dimensional case (in Russian), Teor. Veroyatnost. i Primenen. 10 (1) (1965), pp. 61-69.
- [5] C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law, Ann. Math. Statist. 38 (1968), pp. 1575-1578.
- [6] N. B. Kalinauskaite, The influence of the maximum modulus of a summand on a sum of independent random vectors. I (in Russian), Litovsk. Mat. Sb. 13 (4) (1973), pp. 117-123.
- [7] - Attraction to stable laws of Lévy-Feldheim type (in Russian), ibidem 14 (3) (1974), pp. 93-105.
- [8] L. V. Kim and A. V. Nagaev, The nonsymmetric problem of large deviations (in Russian), Teor. Veroyatnost. i Primenen. 20 (1) (1975), pp. 58-68.
- [9] A. V. Nagaev, Limit theorems for sums of independent two-dimensional random vectors (in Russian), in: Limit Theorems and Statistical Inference, "Fan", Tashkent 1966, pp. 67-82.
- [10] - Limit theorems involving large deviations when Cramer's condition is violated (in Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 6 (1969), pp. 17-22.
- [11] - Some limit theorems of renewal theory (in Russian), Teor. Veroyatnost. i Primenen. 20 (2) (1975), pp. 332-344.
- [12] - and S. K. Sakojan, Limit theorems in Rk that take into account large deviations (in Russian), Dokl. Akad. Nauk SSSR 204 (1972), pp. 554-556.
- [13] A. V. Nagaev and A. Yu. Zaigraev, Multidimensional limit theorems allowing large deviations for densities of regular variation, J. Multivariate Anal. 67 (1998), pp. 385-397.
- [14] S. V. Nagaev, Large deviations of sums of independent random variables, Ann. Probab. 7 (5) (1979), pp. 745-789.
- [15] L. V. Osipov, On large deviations for sums of random vectors in Rk, J. Multivariate Anal. 11 (2) (1981), pp. 115-126.
- [16] I. F. Pinelis, A problem of large deviations in a space of trajectories (in Russian), Teor. Veroyatnost. i Primenen. 26 (1) (1981), pp. 73-87.
- [17] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York 1987.
- [18] L. V. Rozovskii, On probabilities of large deviations in some classes of k-dimensional Borel sets, J. Multivariate Anal. 17 (1) (1985), pp. 1-26.
- [19] - Large deviation probabilities for sums of independent random variables with common distribution from the domain of attraction of nonsymmetric stable law (in Russian), Teor. Veroyatnost. i Primenen. 42 (3) (1997), pp. 496-530.
- [20] E. L. Rvačeva, On domains of attraction of multidimensional distributions (in Russian), L'vov. Gos. Univ., Uč. Zap. Ser. Meh.-Mat. 29 (6) (1954), pp. 5-44, English translation: Select. Transl. Math. Statist. and Probability 2 (1962), pp. 183-205.
- [21] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Process. Stochastic Models with Infinite Variance, Chapman and Hall, London 1994.
- [22] S. G. Tkačuk, Local limit theorems, allowing for large deviations, in the case of stable limit laws (in Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 17 (2) (1973), pp. 30-33.
- [23] - A theorem on large deviations in RS in case of a stable limit law (in Russian), in: Random Processes and Statistical Inference 5, "Fan", Tashkent 1974, pp. 164-174.
- [24] L. Vilkauskas, Large deviations of Linnik type in the multi-dimensional case on certain regions (in Russian), Litovsk. Mat. Sb. 5 (1) (1965), pp. 25-43.
- [25] V. M. Zolotarev, On a new viewpoint of limit theorems taking into account large deviations (in Russian), Proc. Sixth AU-Union Conf. Theory Probab. and Math. Statist., Vilnius 1960, pp. 43-47.
- [26] A. Araujo and E. Gine, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York 1980.
- [27] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer, New York 1998.
- [28] J. D. Deuschel and D. W. Stroock, Large Deviations, Academic Press, Boston 1989.
- [29] Z. Jurek and K. Urbanik, Remarks on stable measures on Banach spaces, Colloq. Math. 38 (2) (1978), pp. 269-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40941771-8ce7-41db-9d99-29c345765cf5