PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Functional prototype of pneumatic flexible shaft coupling with mechanical constant twist angle regulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pneumatic couplings with constant twist angle control are suitable for tuning mechanical systems where the load torque is proportional to the square of shaft speed. This is typical mostly for drives of ships used in water transportation. In given conditions, the coupling maintains the ratio of natural torsional frequency to rotational speed of the mechanical system at a constant value. With proper setting of constant twist angle, resonance with harmonic excitation components in a specific range of operating speed can be avoided. The goal of this article is to present a design of a newly built prototype of coupling with mechanical constant twist angle regulator. During further research, it is planned to be tested in laboratory conditions.
Rocznik
Tom
Strony
115--122
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia
Bibliografia
  • 1. Fabian Michal, Róbert Huňady, František Kupec. 2023. „Reverse Engineering and Rapid Prototyping in the Process of Developing Prototypes of Automotive Parts”. Manufacturing Technology 22(6): 669-678. DOI: 10.21062/mft.2022.084.
  • 2. Fabian Michal, František Kupec. 2021. „Use of 3D Parametric Models in the Automotive Component Design Process”. Advances in Science and Technology Research Journal 15(1): 255-264. DOI: 10.12913/22998624/132589.
  • 3. Feese Troy. 2017. „Coupling Failures in VFD Motor Fan Systems Due To Torsional Vibration”. In: Torsional Vibration Symposium: 1-15. The Vibration Association, Hallwang, Austria. 17-19 May 2017, Salzburg, Austria.
  • 4. Homišin Jaroslav. 2002. Nové Typy Pružných Hriadeľových Spojok: Vývoj - Výskum - Aplikácia. Košice: Vienala. ISBN: 80-7099-834-2. [In Slovak: New Types of Flexible Shaft Couplings: Development - Research - Application].
  • 5. Homišin Jaroslav, Peter Kaššay, Matej Urbanský, Michal Puškár, Robert Grega, Jozef Krajňák. 2020. „Electronic Constant Twist Angle Control System Suitable for Torsional Vibration Tuning of Propulsion Systems”. Journal of Marine Science and Engineering 8(9): 721. DOI: 10.3390/jmse8090721.
  • 6. Kinnunen Kalle, Sampo Laine, Tuomas Tiainen, Raine Viitala. 2022. „Method for Adjusting Torsional Natural Frequencies of Powertrains with Novel Coupling Design”. Machines 10(3): 162. DOI: 10.3390/machines10030162.
  • 7. Opasiak, Tadeusz, Jerzy Margielewicz, Damian Gąska, Tomasz Haniszewski. 2022. „Influence of Changes in the Working Temperature of Flexible Couplings on Their Stiffness Characteristics”. Transport Problems 17(4): 177-86. DOI: 10.20858/tp.2022.17.4.15.
  • 8. SK 6099 Y1. Ladenie mechanickej sústavy aplikáciou pneumatickej spojky s autoreguláciou. Technická univerzita v Košiciach, Košice, SK. 23.02.2012. [In Slovak: SK 6099 Y1. Tuning of Mechanical System with application of Coupling with Autoregulation. Technical University of Košice, Košice, SK. 23.02.2012].
  • 9. SK 6219 Y1. Pneumatická pružná hriadeľová spojka s regulátorom konštantného uhla skrútenia. Technická univerzita v Košiciach, Košice, SK. 25.07.2012. [In Slovak: SK 6099 Y1. Pneumatic Flexible Shaft Coupling with Constant Twist Angle Regulator. Technical University of Košice, Košice, SK. 25.07.2012].
  • 10. Sturm Martin, Lubomír Pešík. 2017. „Determination of a Vibrating Bowl Feeder Dynamic Model and Mechanical Parameters”. Acta Mechanica et Automatica 11(3): 243-246. ISSN: 1898-4088. DOI: 10.1515/ama-2017-0038.
  • 11. Wachel J.C. (Buddy), Fred R. Szenasi. 1993. „Analysis of Torsional Vibrations in Rotating Machinery”. In: Proceedings of the Twenty-Second Turbomachinery Symposium: 127-151. Texas A&M University. Turbomachinery Laboratories, College Station, Texas, USA. 1993. DOI: 10.21423/R1K95J.
  • 12. Wieczorek Andrzej Norbert, Łukasz Konieczny, Grzegorz Wojnar, Rafał Wyroba, Krzysztof Filipowicz, Mariusz Kuczaj. 2024. „Reduction of Dynamic Loads in the Drive System of Mining Scraper Conveyors through the Use of an Innovative Highly Flexible Metal Coupling”. Eksploatacja i Niezawodnosc - Maintenance and Reliability 26(2): 181171. DOI: 10.17531/ein/181171.
  • 13. Zoul Václav. 2014. „Dynamic of Propulsion, Present Situation and Trends”. Transactions of the Universities of Košice 2: 101-106. ISSN: 1335-2334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40923bfe-a28d-4667-95f6-2997f265d802
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.