PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of magnesium and minor zirconium on the wear behavior of 5XXX series aluminum alloys under different environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tribological performance of 5xxx series aluminum alloys with ternary zirconium is evaluated at ambient conditions under dry, wet and saline environment. The experiment has been done using a Pin-on-Disk apparatus under an applied load of 20N. The sliding distances varies ranging from 116m-2772m at a sliding velocity of 0.385 ms-1. The results show that presence of Mg and Zr into this alloy helps to increase their strength and wear resistance under dry sliding condition. But they significantly suffer under wet and corrosive environment due to formation of β-phase Al3Mg2, to slip bands and grain boundaries which may lead to and stress-corrosion cracking. The variation of friction coefficient is observed in wet and corrosive environment due to the formation of oxidation film, lubrication, and corrosion action in solution. The SEM analysis shows that brittle Al3Mg2 phase initiate the fracture surface for Al-Mg alloy and Zr addition accelerate the brittleness of the alloy owing the fine precipitates of Al3Zr.
Rocznik
Strony
209--219
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Directorate of Advisory, Extension and Research Services, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
Bibliografia
  • 1. Alavudeen A., Venkateshwaran N., Winowlin JT. (2006). A Textbook of Engineering Materials and Metallurgy. Laxmi publications Pvt. Ltd., New Delhi, India.
  • 2. Olabisi AI., Boye TE., Eyere E. (2017). Evaluation of pure aluminium inoculated with varying grain sizes of an agro-waste based inoculant. Advances in Science, Technology and Engineering Systems Journal, Vol. 2, No. 4, pp. 14-25.
  • 3. Polmer IJ. (2005). Light Alloys, from traditional alloys to nanocrystals. 4th edition, Butterworth-Heinemann, UK.
  • 4. Rana RS., Purohit R., Das S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications, Vol. 2, No. 6, pp. 1-7.
  • 5. Kaiser MS., Banerjee MK. (2008). Effect of ternary scandium and quaternary zirconium and titanium additions on the tensile and precipitation properties of binary cast Al-6Mg alloys. Jordan Journal of Mechanical and Industrial Engineering, Vol. 2, No. 2, pp. 93-99.
  • 6. Krol M., Tanski T., Snopinski P., Tomiczek B. (2017). Structure and properties of aluminium–magnesium casting alloys after heat treatment. Journal of Thermal Analysis and Calorimetry, Vo. 127, No. 1, pp. 299-308.
  • 7. Sanders RE., Hollinshead P., Simielli EA. (2004). Industrial development of non-heat treatable aluminum alloys. Materials Science Forum, Vol. 28, pp. 53-64.
  • 8. Kaiser MS., Datta SA., Roychowdhury A., Banerjee MK. (2008). Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy. Materials Characterization, Vol. 59, No. 11, pp. 1661-1666.
  • 9. Canales AA., Carrera E., Silva JT., Valtierra S., Colas R. (2012). Mechanical properties in as-cast and heat treated Al-Si-Cu alloys. International Journal of Microstructure and Materials Properties, Vol. 7, No. 4, pp. 281-300.
  • 10. Jayalakshmi S., Dezhi Q., Sankaranarayanan S., Gupta M. (2013). Microstructure and mechanical properties of Mg-Al alloys with in situ Al4C3 phase synthesised by CO2 incorporation during liquid state processing. International Journal of Microstructure and Materials Properties, Vol. 8, No. 4/5, pp. 283-98.
  • 11. Kaygisiz Y., Marasli N. (2014). Microstructural, mechanical and electrical characterization of directionally solidified Al-Si-Mg eutectic alloy. Journal of Alloys and Compounds, Vol. 618, pp. 197-203.
  • 12. Shu-Qing Y., Xing-fu L. (2014). The effect of Si morphology on the microstructure and wear property of ZA48 alloy. International Journal of Microstructure and Materials Properties, Vol. 9, No. 1, pp. 88-96.
  • 13. Lin YK., Wang SH., Chen RY., Hsieh TS., Tsai L., Chiang CC. (2017). The effect of heat treatment on the sensitized corrosion of the 5383-H116 Al-Mg Alloy. Materials, Vol. 10, No. 275, pp. 1-9.
  • 14. Kaiser MS. (2014). Fractional recrystallization kinetics in directly cold rolled Al-Mg, Al-Mg-Sc and Al-Mg-Sc-Zr alloy. Iranian Journal of Materials Sciences and Engineering, Vol. 11, No. 4, pp. 80-87.
  • 15. Kendig KL., Miracle DB. (2002). Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Materialia, Vol. 50, No. 16, pp. 4165-4175.
  • 16. Raghavan V. (2009). Al-Mg-Sc-Ti-Zr (Aluminum-Magnesium-Scandium-Titanium-Zirconium). Journal of Phase Equilibria and Diffusion, Vol. 30, No. 2, pp. 204-204.
  • 17. Wang F., Eskin DG., Khvan AV., Starodub KF., Lim JJH., Burke MG., Connolley T., Mi J. (2017). On the occurrence of a eutectic-type structure in solidification of Al-Zr alloys. Scripta Materialia, Vol. 133, pp. 75-78.
  • 18. Kashyap KT. (2001). Effect of zirconium addition on the recrystallization behaviour of a commercial Al-Cu-Mg alloy. Bulletin of Materials Science, Vol. 24, No. 6, pp. 43-648.
  • 19. Davis J.R. (2004).Tensile testing. 2nd edition. ASM International, Materials Park, OH, USA.
  • 20. Filadelfia P. American Society for Testing and Materials(2005).ASTM G99-05: Standard Test Method for Wear Testing with a Pin on Disk Apparatus, ASTM international, West Conshohocken, PA, USA
  • 21. Kaiser MS., Sabbirb SH., Kabir MS., Rahman M., Nur MA. (2018). Study of mechanical and wear behaviour of hyper-eutectic Al-Si automotive alloy through Fe, Ni and Cr addition. Journal of Materials Research, Vol. 21, No.4, pp. 1-9.
  • 22. Behera A., Mishra SC. (2016). Effect of aging on wear behavior of Al-Mg-SiC composite. Journal of Metallurgical and Materials Engineering Research, Vol. 2, No.1, pp. 1-12.
  • 23. Jaafar A., Rahmat A., Zainol I., Hussain Z. (2012). Effects of composition on the mechanical properties and microstructural development of dilute 6000 series alloys. Journal of Applied Sciences, Vol. 12, No. 8, pp. 775-780.
  • 24. Xia S., Ma M., Zhang J., Wang W., Liu W. (2014). Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminium alloy. Materials Science and Engineering: A, Vol. 609, pp. 168-176.
  • 25. Ebrahimi SHS., Emamy M., Pourkia N., Lashgar HR. (20101). The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Materials and Design, vol. 31, pp. 4450-4456.
  • 26. Liang Z., Lin PQ., Bin HY., Zhen WC., Jie LW. (2007). Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al-Zn-Mg-Cu alloys. Trans Nonferrous Met Soc China, Vol. 17, No. 2, pp. 340-345.
  • 27. Hutchings IM. (1994). Tribological properties of metal matrix composites. Materials Science and Technology, Vol. 10, No. 6, pp. 513-517.
  • 28. Ma T., Yamaura H., Koss DA., Voigt RC. (2003). Dry sliding wear behavior of cast SiC-reinforced Al MMCs. Materials Science and Engineering A, Vol. 360, No. 1-2, pp. 116-125.
  • 29. Starink MJ., Zahra AM. (1996). Precipitation kinetics of an Al-15%Mg alloys studied by microcalorimetry and TEM. Materials Science Forum, Vol. 217-222, pp. 795-800.
  • 30. Archard JF. (1953). Contact and rubbing of flat surfaces. Journal of Applied Physics, Vol. 24, pp. 981-988.
  • 31. Knipling KE., Dunand DC., Seidman DN., Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600°C. Acta Materialia, Vol. 56, pp. 118-1195.
  • 32. Kaiser MS. (2018). Efffect of solution treatment on the age hardening behaviour of Al-12Si-1Mg-1Cu piston alloy with trace Zr addition. Journal of Casting and Materials Engineering, Vol. 2, No. 2, pp. 30-37.
  • 33. Yasakau KA., Zheludkevich ML., Amaka SV., Ferreira MGS. (2007). Role of intermetallic phases in localized corrosion of AA5083. Electrochimica Acta, Vol. 52, pp. 7651-7659.
  • 34. Liu M., Zanna S., Ardelean H., Frateur I., Schmutz P., Song G., Atrens A., Marcus P. (2009). A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science, Vol. 51, No. 5, pp. 1115-1127.
  • 35. Yoshida H., Baba Y. (1982). The Role of Zirconium to Improve Strength and Stress-corrosion Resistance of AI-Zn-Mg and Al-Zn-Mg-Cu Alloys. Transactions of the Japan Institute of Metals, Vol. 23, No. 10, pp. 620-630.
  • 36. Dhanasekaran S., Gnanamoorthy R. (2007). Dry sliding friction and wear characteristics of Fe-C-Cu alloy containing molybdenum di sulphide. Materials and Design, Vol. 28, pp. 1135-1141.
  • 37. Meyer WE., Walter JD. (1983). Frictional Interaction of Tire and Pavement, STP 793. American Society for Testing and Materials, USA.
  • 38. Nakata K., Kim YG., Fujii H., Tsumura T., Komazaki T. (2005). Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Material Science Engineering, Vol. 437A, pp. 274-279.
  • 39. TyagiR., Xiong DS., Li J., Dai J. (2011). Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear, Vol. 270, No. 7, pp. 423-430.
  • 40. Zmitrowicz A. (2005). Wear debris: A Review of properties and constitutive models. Journal of Theoretical and Applied Mechanics, Vol. 43, No. 1, pp. 3-35.
  • 41. Snopinski P., Tanski T., Labisz K., Rusz S., Jonsta P., Krol M. (2016). Wrought aluminium–magnesium alloys subjected to SPD processing. International Journal of Materials Research, Vol. 107, pp. 1-9.
  • 42. Kaiser S., Kaiser MS. (2020). Wear Behavior of Commercial Pure Copper with Al and Zn under Dry, Wet and Corrosive Environment. Journal of Materials and Environmental Sciences, Vol. 11, No. 4, pp. 551-563.
  • 43. HatchJE. (1984). Aluminium: Properties and Physical Metallurgy. ASM International, Ohio, USA.
  • 44. Sheppard T. (2010). Extrusion of Aluminium Alloys. Springer-Verlag, New York Inc., USA.
  • 45. Kaiser MS. (2014). Effect of Scandium on the Softening Behaviour of Different Degree of Cold Rolled Al-6Mg Alloy Annealed at Different Temperature. International Journal of Advances in Materials Science and Engineering, Vol. 1, No. 1, pp. 39-49.
  • 46. Gupta AK., Lloyd DJ., Court SA. (2001). Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Materials Science and Engineering A., Vol. 316, No. 1-2, pp. 11-17.
  • 47. Croteau JR., Griffiths S., Rossell MD., Leinenbach C., Kenel C., Jansen V., Seidman DN., Dunand DC., Vo NQ. (2018). Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia, Vol. 153, pp. 35-44.
  • 48. Liu ZX., Li ZJ., Wang MX., Weng YG. (2008). Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys. Materials Science and Engineering: A., Vol. 483-484, pp. 120-122.
  • 49. Zolriasatein A., Khosroshahi RA., Emamy M., Nemati N., Mechanical and wear properties of Al-Al3Mg2 nanocomposites prepared by mechanical milling and hot pressing. International Journal of Minerals, Metallurgy and Materials, Vol. 20, No. 3, pp. 290-297.
  • 50. Kaiser S., Kaiser MS. (2019). Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al. International Journal of Mechanical and Materials Engineering, Vol. 13, No. 9, pp. 607-611.
  • 51. Qian H., Zhu D., Hu C., Jiang X. (2018). Effects of Zr additive on microstructure, mechanical properties, and fractography of Al-Si alloy. Metals, Vol. 124, No. 8, pp. 2-10.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-408feb23-c831-4e8a-b2cf-14f6cd2c3576
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.