PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of mechanical parameters of bone tissue as a base of numerical simulation in medicine

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to show the new possibility of evaluation of bone tissues properties in experiment and next the numerical simulation and verification of selected problems. Design/methodology/approach: The lifestyle that has been favored lately has led to unfavorable changes in the human body. This is manifested mainly by joint anomalies and changes in the structure of bone tissue. The scientists try to aid the healing and rehabilitation systems. It is possible to prepare a numerical model of complex biomechanical structures using advanced FE systems. The process of modeling is one of the most important steps of this research and assignment of material data influences on the precision of obtained results. The classic measurement methods with particular emphasis on their application in the study of bone, taking into account the advanced methods for measuring displacement are applied (DIC, nanoindentation). Also QCT combined with evolutionary methods gives interesting results in identification of material parameters Numerical simulations are verified in experiment. Findings: Obtained results allow to compare the displacement and strain from experiment and numerical simulation. From numerical simulation, after FEM analysis we obtained full set of mechanical parameters useful in planning of surgical intervention (THA, pelvis reconstruction), aided the diagnostic in risky state and design of prosthesis. Research limitation/implications: The precision of identification of material parameters depend on many parameters and influences on the precision of the results from numerical simulation. Research is conducted mainly on preparations and not on living tissue. The target should be in-vivo noninvasive measurement. Originality/Value: Combination of numerical simulation and experimental research is needed to obtain correct results and broaden the spectrum of relevant parameters necessary to support surgical and rehabilitation. Both approaches require modern equipment and advanced testing methods.
Rocznik
Strony
49--67
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering
autor
  • Institute of Computational Mechanics and Engineering
Bibliografia
  • [1] S.C. Cowin (Ed.), Bone mechanics handbook, CRC Press LLC, 2001.
  • [2] Y.H. An, R.A. Draughn, Mechanical testing of bone and the bone–implant interface, CRC Press, Boca Raton, USA, 2000.
  • [3] T.M. Keaveny, E.F. Morgan, O.C. Yeh, Bone mechanics, in: Standard handbook of biomedical engineering and design, The McGraw-Hill Co., 2004.
  • [4] R.B. Ashman, J.Y. Rho, Elastic modulus of trabecular bone material, Journal of Biomechanics 21 (1988) 77- 81.
  • [5] S. Boutroy, B. van Rietbergen, E. Sornay-Rendu, F. Munoz, M.L. Bouxsein, P.D. Delmas, Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women, Journal of Bone and Mineral Research 23/3 (2008) 393-399.
  • [6] B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjólfsson, M. Viceconti, Mathematical relationships between bone density and mechanical properties: A literature review, Clinical Biomechanics 23 (2008) 135-146.
  • [7] R. Hodgskinson, J.D. Currey, Young’s modulus, density and material properties in cancellous bone over a large density range, Journal of Material Science: Materials in Medicine 3 (1992) 377-381.
  • [8] J.H. Keyak, I.Y. Lee, H.B. Skinner, Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures, Journal of Biomedical Material Research 28 (1994) 1329-1336.
  • [9] J.H. Keyak, T.S. Kaneko, J. Tehranzadeh, H.B. Skinner, Predicting proximal femoral strength using structural engineering models, Clinical Orthopaedics and Related Research 437 (2005) 219-228.
  • [10] W. Pistoia, B. van Rietbergen, F. Eckstein, C. Lill, E.M. Lochmuller, P. Rüegsegger, Prediction of Distal Radius Failure with µFE Models Based on 3D-PQCT Scans, Advances in Experimental Medicine and Biology 496 (2001) 143-151.
  • [11] J.Y. Rho, M.C. Hobatho, R.B. Ashman, Relations of mechanical properties to density and CT number in human bone, Medical Engineering and Physics 17 (1995) 347-355.
  • [12] L. Feng, I. Jasiuk, Effect of specimen geometry on tensile strength of cortical bone, Journal of Biomedical Materials Research A 95/2 (2010) 580-587.
  • [13] K.B. Garnier, R. Dumas, C. Rumelhart, M.E. Arlot, Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests, Medical Engineering and Physics 21 (1999) 641-649.
  • [14] T.M. Keaveny, R.E. Borchers, L.J. Gibson, W.C. Hayes, Theoretical analysis of the experimental artifact in trabecular bone compressive modulus, Journal of Biomechanics 26/4-5 (1993) 599-607 http://dx.doi.org/10.1016/0021-9290(93)90021-6.
  • [15] T.M. Keaveny, T.P. Pinilla, R.P. Crawford, D.L. Kopperdahl, A. Lou, Systematic and random errors in compression testing of trabecular bone, Journal of Orthopeadic Research 15/1 (1997) 101-110.
  • [16] T.S. Keller, Predicting the compressive mechanical behavior of bone, Journal of Biomechanics 27 (1994) 1159-1168.
  • [17] A. Öchsner, W. Ahmed, Biomechanics of hard tissues. Modeling, testing and materials, Wiley-VCH Verlag GmBH&Co. KGaA, Weinheim, 2010.
  • [18] D.T. Reilly, A.H. Burstein, The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics, 8 (1975) 393-405.
  • [19] A. Sanyal, A. Gupta, H.H. Bayraktar, R.Y. Kwon, T.M. Keaveny, Shear strength behavior of human trabecular bone, Journal of Biomechanics 45 (2012) 2513-2519.
  • [20] M. Kasra, M.D. Grynpas, On shear properties of trabecular bone under torsional loading: Effects of bone marrow and strain rate, Journal of Biomechanics 40 (2007) 2898-2903.
  • [21] E. Hamed, I. Jasiuk, A. Yoo, Y.H. Lee, T. Liszka, Multi-scale modelling of elastic moduli of trabecular bone, Journal of the Royal Society Interface 9/72 (2012) 1-20.
  • [22] T.M. Keaveny, O.C. Yeh, Architecture and trabecular bone – toward an improved understanding of the biomechanical effects of age, sex and osteoporosis, Journal of Musculoskeletal and Neuron Interact 2/3 (2002) 205-208.
  • [23] P. Makowski, A. John, W. Kuś, G. Kokot, Multiscale modeling of the simplified trabecular bone structure, Proceedings of the 18th International Conference: Mechanics, Kaunas, 2013, 136-161.
  • [24] J. Norman, J.G. Shapter, K. Short, L.J. Smith, N.L. Fazzalari, Micromechanical properties of human trabecular bone: A hierarchical investigation using nanoindentation, Journal of Biomedical Materials Research A 87/1 (2008) 196-202.
  • [25] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarhical structure of bone, Medical Engineering and Physics 20 (1998) 92-102.
  • [26] B. van Rietbergen, Micro-FE analyses of bone: state of the art, in: Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone, S. Majumdar, B.K. Bay (Eds.), Chapter: Metrics, Vol. 496: Advances in Experimental Medicine and Biology, Springer, 2001, 21-30.
  • [27] T.J. Vaughan, C.T. McCarthy, L.M. McNamara, A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone, Journal of the Mechanical Behavior of Biomedical Materials 12 (2012) 50-62.
  • [28] H. Wang, B. Ji, S. Liu, E. Guo, Y. Huang, K.C. Hwang, Analysis of microstructural and mechanical alterations of trabecular bone in a simulated threedimensional remodeling process, Journal of Biomechanics 45 (2012) 2417-2425.
  • [29] X. Wang, J.S. Nyman, X. Dong, H. Leng, M. Reyes, Fundamental Biomechanics in Bone Tissue Engineering, Morgan & Claypool, 2010.
  • [30] M. Binkowski, G.R. Davis, Z. Wróbel, A.E. Goodship, Quantitative Measurement of the Bone Density by X-Ray Micro Computed Tomography, C.T. Lim, J.C.H. Goh (Eds.), WCB 2010, IFMBE Proceedings Vol. 31, 2010, 856-859.
  • [31] M. Binkowski, A. Dyszkiewicz, Z. Wróbel, The analysis of densitometry image of bone tissue based on computer simulation of X-ray radiation propagation through plate model, Computers in Biology and Medicine 37/2 (2006) 245-250.
  • [32] M. Binkowski, E. Tanck, M. Barink, W.J. Oyen, Z. Wróbel, N. Verdonschot, Densitometry test of bone tissue: Validation of computer simulation studies, Computational Biological Medicine 38/7 (2008) 755- 764.
  • [33] Ł. Cyganik, M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechała, R. Nowak, Z. Wróbel, A. John, Experimental verification of the relationships between Young's modulus and bone density using digital image correlation, Proceedings of the PCM-CMM-2015 Congress, CRC Press/Balkema, 2016, 133-136.
  • [34] Ł. Cyganik, M. Binkowski, G. Kokot, T. Rusin, P. Popik, F. Bolechała, R. Nowak, Z. Wróbel, A. John, Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties, Journal of the Mechanical Behavior of Biomedical Materials 36 (2014) 120-134, doi: 10.1016/j.jmbbm.2014.04.011.
  • [35] D. Christen, A. Levchuk, S.A. Schor, P. Schneider, S.K. Boyd, A. Müller, Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage, Journal of the Mechanical Behavior of Biomedical Materials 8 (2012) 184-193.
  • [36] D.M. Ebenstein, L.A. Pruitt, Nanoindentation of biological materials, NanoToday 1/3 (2006) 26-33.
  • [37] Z. Fan, J.Y. Rho, Effects of viscoelasticity and time- dependent plasticity on nanoindentation measurements of human cortical bone, Journal of Biomedical Materials Research A 67/1 (2003) 208-214.
  • [38] K. Janca, J. Tarasiuk, A.S. Bonnet, P. Lipinski, Genetic algorithms as a useful tool for trabecular and cortical bone segmentation, Computer Methods and Programs in Biomedicine 111/1 (2013) 72-83 http://dx.doi.org/10.1016/j.cmpb.2013.03.012.
  • [39] A. John, G. Kokot, Experimental testing and numerical simulation of bone tissue, Annals of Faculty Engineering Hunedoara – International Journal of Engineering 14/3 (2016) 55-66.
  • [40] A. John, G. Kokot, The test of implementation the orthotropic material properties in numerical model of human pelvic bone, Proceedings of the 1st Conference “Computational Mechanics” CEACM and Proceedings of the 15th International Conference “Computer Methods in Mechanics” CMM2003, Gliwice-Wisła, 2003, 161-162 (on CD).
  • [41] A. John, G. Kokot, The anisotropic material properties in numerical model of the human pelvic bone, Proceedings of the International Conference “Numerical Methods in Continuum Mechanics” NMCM2003, Extended Abstracts, Zilina, 2003, 55-56.
  • [42] A. John, W. Kuś, The identification of material coefficients of human pelvic bone using evolutionary algorithm, Proceedings of AI-METH 2002, Gliwice, 2002, 201-204.
  • [43] A. John, W. Kuś, P. Orantek, Material coefficients identification of bone tissues using evolutionary algorithms, M. Tanaka (Ed.), Inverse Problems in Engineering Mechanics IV, Elsevier, 2003, 95-102.
  • [44] G. Kokot, M. Binkowski, A. John, B. Gzik-Zroska, Advanced mechanical testing methods in determining bone material, Proceedings of the 17th International Conference “Mechanics”, Kaunas, 2012, 139-143.
  • [45] A. John, M. Duda, G. Kokot, The analysis of femur and parametric endoprosthesis system, Proceedings of the 17th International Conference “Mechanics”, Kaunas, 2012, 99-105.
  • [46] R. Rezende, M. Rezende, P. Bártolo, A. Mendes, R.M. Filho, Optimization of Scaffolds in Alginate for Biofabrication by Genetic Algorithms, Computer Aided Chemical Engineering 27 (2009) 1935-1940.
  • [47] B. van Rietbergen, S. Majumdar, W. Pistoia, D.C. Newitt, M. Kothari, A. Laib, P. Rüegsegger, Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, µQCT and MR images, Technology and Health Care 6 (1998) 413-420.
  • [48] N. Vilayphiou, S. Boutroy, E. Sornay-Rendu, B. van Rietbergen, F. Munoz, P.D. Delmas, R. Chapurlat, Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women, Bone 46 (2012) 1030-1037.
  • [49] H. Beaupied, E. Lespessailles, C.L. Benhamou, Evaluation of macrostructural bone biomechanics, Joint Bone Spine 74 (2007) 233-239.
  • [50] I.G. Jang, I.Y. Kim, Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling, Journal of Biomechanics 43 (2012) 294-301.
  • [51] T.H. Lim, J.H. Hong, Poroelastic properties of bovine vertebral trabecular bone, Journal of Orthopaedic Research 18 (2000) 671-677.
  • [52] L.P. Mullins, M.S. Bruzzia, P.E. McHugh, Measurement of the microstructural fracture toughness of cortical bone using indentation fracture, Journal of Biomechanics 40 (2007) 3285-3288.
  • [53] A. Nazarian, D. von Stechow, D. Zurakowski, R. Muller, B.D. Snyder, Bone Volume Fraction Explains the Variation in Strength and Stiffness of Cancellous Bone Affected by Metastatic Cancer and Osteoporosis, Calcified Tissue International 83 (2008) 368-379.
  • [54] G.L. Niebur, T.M. Keaveny, Computational modeling of trabecular bone, in: Computational Modeling in Biomechanics, Suvranu De, Farshid Guilak, Mohammad Mofrad R.K. (Eds.), Chapter, Springer, 2009, 277-306.
  • [55] C. Oomens, M. Brekelmans, F. Baaljens, Biomechanics. Concepts and computations, Cambridge University Press, Cambridge, 2009.
  • [56] W.M Saltzman, Biomedical engineering, Bridging Medicine and Technology, Cambridge University Press, 2009.
  • [57] E. Tanck, J.B. van Aken, Y.M. van der Linden, H.W. Bart Schreuder, M. Binkowski, H. Huizenga, N. Verdonschot, Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models, Bone 45 (2009) 777-783.
  • [58] E. Verhulp, Analyses of trabecular bone failure, Universiteitsdrukkerij TU Eindhoven, Eindhoven, The Netherlands, 2006.
  • [59] D.C. Writz, N. Schiffers, T. Pandorf, K. Radermacher, D. Weichert, R. Forst, Critical evaluation of known bone material properties to realize anisotropic FEsimulation of the proximal femur, Journal of Biomaterials 33 (2000) 1325-1330.
  • [60] Application Note, T-Q-400-Basics-3DCORR-002a-EN, Basics of 3D Digital Image Correlation, Dantec Dynamics.
  • [61] Technical Note, T-Q-400-Accuracy-3DCORR-003-EN, Error Estimations of 3D Digital Image Correlation Measurements, Dantec Dynamics.
  • [62] P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, S. Shefelbine, Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, Journal of Biomechanics 43 (2010) 599-605.
  • [63] E. Verhulp, B. van Rietbergen, R. Huiskes, A threedimensional digital image correlation technique for strain measurements in microstructures, Journal of Biomechanics 37 (2004) 1313-1320.
  • [64] W.C. Olivier, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7/6 (1992) 1564-1583.
  • [65] S. Bull, Extracting hardness and Young’s modulus from load-displacement curves, Zeitschrift für Metallkunde 93/9 (2002) 870-874.
  • [66] A.C. Fischer Cripps, The IBIS Handbook of Nanoindentation, Fischer Crips Laboratories Pty Ltd., 2009.
  • [67] C.E. Hoffler, X.E. Guo, P.K. Zysset, S.A. Goldstein, An application of nanoindentation technique to measure bone tissue Lamellae properties, Journal of Biomechanics Engineering 127/7 (2005) 1046-1053.
  • [68] H. Isaksson, S. Nagao, M. Małkiewicz, P. Julkunen, R. Nowak, J.S. Jurvelin, Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone, Journal of Biomechanics 43 (2010) 2410-2417.
  • [69] G. Lewis, J.S. Nyman, The use of nanoindentation for characterizing the properties of mineralized hard tissues: state-of-the art review, Journal of Biomedical Material Research B: Applied Biomaterials 87/1 (2008) 286-301.
  • [70] J. Menclk, M.V. Swain, Errors associated with depthsensing micro-indentation tests, Journal of Materials Research 10/6 (1995) 1491-1501.
  • [71] J. Nemecek, Nanoindentation in material science, Intech, 2012, http://dx.doi.org/10.5772/2829.
  • [72] J.Y. Rho, G.M. Pharr, Effects of drying on the mechanical properties of bovine femur measured by nanoindentation, Journal of Material Science: Materials in Medicine 10/8 (1999) 485-488.
  • [73] J.Y. Rho, T.Y. Tsui, G.M. Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18 (1997) 1325-1330.
  • [74] N. Rodriguez-Floreza, M.L. Oyen, S.J. Shefelbine, Insight into differences in nanoindentation properties of bone, Journal of the Mechanical Behaviour of Biomedical Materials 18 (2013) 90-99.
  • [75] J.G. Swadener, J.Y. Rho, G.M. Pharr, Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone, Journal of Biomedical Materials Research 57/1 (2001) 108-112.
  • [76] Z. Wu, T.A. Baker, T.C. Ovaert, G.L. Niebur, The Effect of Holding Time on Nanoindentation Measurements of Creep in Bone, Journal of Biomechanics 44/6 (2011) 1066-1072.
  • [77] P.K. Zysset, E. Guo, E. Hoffler, K.E. Moore, S.A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, Journal of Biomechanics 32 (1999) 1005-1012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-408bb2e9-610e-42ce-910c-448e1d3721bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.