PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-linear viscoelastic constitutive model for bovine cortical bone tissue

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a constitutive law formulation for bovine cortical bone tissue is presented. The formulation is based on experimental studies performed on bovine cortical bone samples. Bone tissue is regarded as a non-linear viscoelastic material. The constitutive law is derived from the postulated strain energy function. The model captures typical viscoelastic effects, i.e. hysteresis, stress relaxation and rate-dependence. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at three different strain rates, i.e. [...] = 0:1 min_1, [...] = 0:5 min_1 and [...] = 1:0 min_1. In order to numerically validate the constitutive model the fourth-order stiffness tensor was analytically derived and introduced to Abaqus® finite element (FE) software by means of UMAT subroutine. The model was experimentally validated. The validation results show that the derived constitutive law is adequate to model stress–strain behaviour of the considered bone tissue. The constitutive model, although formulated in the strain rate range [...] = 0:1-1:0 min_1, is also valid for the strain rate values slightly higher than [...] = 1:0 min_1. The work presented in the paper proves that the formulated constitutive model is very useful in modelling compressive behaviour of bone under various ranges of load.
Twórcy
  • Institute of Mechanics and Printing, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warszawa, Poland
autor
  • Institute of Mechanics and Printing, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warszawa, Poland
Bibliografia
  • [1] Fondrk MT, Bahniuk EH, Davy DT. Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 1999;121:616–21.
  • [2] Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res 1999;17:346–53.
  • [3] Garcia D, Zysset PK, Charlebois M, Curnier A. A three- dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 2009;8:149–65.
  • [4] Natali AN, Carniel EL, Pavan PG. Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 2008;30:905–12.
  • [5] Melnis AE, Knets IV, Moorlat PA. Deformation behavior of human compact bone tissue upon creep under tensile testing. Mech Compos Mater 1980;15(5):574–9.
  • [6] Melnis AE, Knets IV. Effect of the rate of deformation on the mechanical properties of compact bone tissue. Mech Compos Mater 1982;18(3):358–63.
  • [7] Johnson TPM, Socrate S, Boyce MC. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater 2010;6:4073–80.
  • [8] McElhaney JH. Dynamic response of bone and muscle tissue. J Appl Physiol 1966;21(4):1231–6.
  • [9] Wood JL. Dynamic response of human cranial bone. J Biomech 1971;4(1):1–12.
  • [10] Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng 1974;2 (2):217–25.
  • [11] Eshraghi A, Papoulia KD, Jahed H. Eulerian framework for inelasticity based on the Jaumann rate and a hyperelastic constitutive relation—Part I: Rate-form hyperelasticity. ASME J Appl Mech 2013;80:10271–102711.
  • [12] Palmer JS, Boyce MC. Constitutive modeling of the stress– strain behavior of F-actin filament networks. Acta Biomater 2008;4:597–612.
  • [13] Pawlikowski M. Cortical bone tissue viscoelastic properties and its constitutive equation—preliminary studies. Arch Mech Eng 2012;LIX:31–52.
  • [14] Bischoff JE, Arruda EA, Grosh K. A microstructurally based orthotropic hyperelastic constitutive law. ASME J Appl Mech 2002;69:570–9.
  • [15] Peng XQ, Guo ZY, Moran B. An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. ASME J Appl Mech 2006;73:815–24.
  • [16] Doll S, Schweizerhof K. On the development of volumetric strain-energy functions. J Appl Mech 2000;67:17–21.
  • [17] Taylor RL, Pister KS, Goudreau GL. Thermomechanical analysis of viscoelastic solids. Int J Numer Methods Eng 1970;2:45–59.
  • [18] Goh SM, Charalambides MN, Williams JG. Determination of the constitutive constants of non-linear viscoelastic materials. Mech Time-Depend Mater 2004;8:255–68.
  • [19] Pawlikowski M. Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite. Mech Time-Depend Mater 2014;18:1–20.
  • [20] ABAQUS Inc., 2010, ABAQUS Version 6.10 Analysis User's Manual.
  • [21] Spyrou LA, Aravas N. Muscle and tendon tissues: constitutive modeling and computational issues. ASME J Appl Mech 2011;78:10151–101510.
  • [22] Pawlikowski M, Skalski K, Haraburda M. Process of hip joint prosthesis design including bone remodeling phenomenon. Comp Struct 2003;81:887–93.
  • [23] Borkowski P, Skalski K. Expandable endoprosthesis for growing patients—reliability and research. Biocybern Biomed Eng 2014;34(4):199–205.
  • [24] Stadelmann VA, Conway CM, Boyd SK. In vivo monitoring of bone–implant bond strength by micro-CT and finite element modelling. Comp Methods Biomech Biomed Eng 2013;16(9):993–1001.
  • [25] Madeo A, Lekszycki T, dell'Isola F. A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. C R Méc 2011;339(10):625–40.
  • [26] Lekszycki T, dell'Isola F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bioresorbable materials. ZAMM – J Appl Math Mech 2012;92:426–44.
  • [27] Xu L, Wang C, Jiang M, He H, Song Y, Chen H, Shen J, Zhang J. Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng 2014;27:1240–8.
  • [28] Linde F, Sørensen HC. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 1993;26(10):1249–52.
  • [29] Unger S, Blauth M, Schmoelz W. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 2010;47:1048–53.
  • [30] Harrigan TP, Jasty M, Mann RW, Harris WH. Limitations of the continuum assumption in cancellous bone. J Biomech 1988;21:269–75.
  • [31] Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J Biomech 1992;25:359–68.
  • [32] Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27:375–89.
  • [33] Mercer C, He MY, Wang R, Evans AG. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2006;2(1):59–68.
  • [34] Coleman BD, Noll W. Foundations of linear viscoelasticity. Rev Mod Phys 1961;3(2):239–49.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-407df27a-9f82-43a3-98a7-59c88ab0a13f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.