PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of polarization plane rotation on binary superlattice transmission

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article is to examine what influence on the transmission has a rotation of the vibration plane, which electric field vector of the electromagnetic wave lies, on the transmission properties of the binary superlattice. In the literature, the most common transmission structure are given for the P or S wave polarization. This article aims to verify the nature of the transmission when the polarization is not strictly defined. Design/methodology/approach: In the paper the transmission of quasi one-dimensional binary structures is analized depending on the angle of incidence and wavelength of electromagnetic wave and on torsion angle of the plane of the electric field, using the matrix method. Findings: Changing the angle of rotation of the incident electromagnetic wave electric field vibration plane affects the size of the interband transmission and causes separation of fixed transmission bands locations for specific wavelength and angle of incidence. Research limitations/implications: Quasi one-dimensional binary superlattices composed of lossless, non dispersive isotropic materials were analyzed. It would be important to investigate influence of loss factor and the two- and three-dimensional periodic and aperiodic structures on the electromagnetic wave transmission. Also important would be to compare results with those obtained from the use of finite increments algorithm in the time domain (FDTD) and the correlation with experimental data. Practical implications: The test structures may be used as filters of electromagnetic wave propagation. The structure and thickness of the layers has a significant influence on the characteristics of the transmission, which will allow to design the structure in order to met the conditions of specific applications. Originality/value: In this paper, a method for the analysis of the electromagnetic waves transmission characteristics in the case where the electric field is not polarized in the S, or P directions only.
Słowa kluczowe
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1]M. Born, E. Wolf, Principles of Optics, Pergamon Press, London, 1968.
  • [2]P. Yeh, Optical Waves in Layered Media, Publishing house John Wiley and Sons, New York, 1988.
  • [3]L. M. Briechowski, Wolny w swoistych sriedach, Publishing house Nauka, Moskwa, 1973. [4]A. Yariv, P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation, Publishing house John Wiley and Sons, New York, 1984.
  • [5]A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247 (2005) 247-256.
  • [6]S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.
  • [7]E.Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters 58 (1987) 2059-2062.
  • [8]E.Yablonovitch, Photonic crystals, light semiconductors, The World of Science 126 /2 (2002) 46-53 (in Polish).
  • [9]J.D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore, 1995.
  • [10]S.G. Johnson, J. D. Joannopoulos, Photonic Crystals. The Road from Theory to Practice, Kluwer Academic Publishers, Boston, 2002.
  • [11]D.J. Lockwood, L. Pavesi (Eds.), Silicon Photonics, Topics in Applied Physics 94, Springer-Verlag Berlin Heidelberg, 2004.
  • [12]K. Sakoda, Optical Properties of Photonic Crystals, Publishing house Springer-Verlag Berlin, 2001.
  • [13]A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, Boston, 2003.
  • [14]D.S. Shechmtan, I. Blench, D. Gratias, J. W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53 (1984) 1951-1953.
  • [15]D. Levine, P.J. Steinhardt, Quasicrystals: A new class of ordered structures, Physical Review Letters 53 (1984) 2477-2480.
  • [16]D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Physical Review B 34 (1986) 596-616.
  • [17]P.J. Steinhardt, S. Ostlund, The Physics of Quasicrystals,World Scientific, Singapore, 1987.
  • [18]P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on Progress in Physics 54 (1991) 1373-1425.
  • [19] D.P. Di Vincenzo, P.J. Steinhardt (Eds.), Quasicrystals: The State of the Art, World Scientific, Singapore, 1991.
  • [20] S.J. Poon, Electronic properties of quasicrystals, An experimental review, Advances in Physics 41 (1992) 303.
  • [21] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [22] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14 (1970) 61-65.
  • [23] A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports 357 (2002) 1-111.
  • [24] M. Gluck, A.R. Kolovsky, H.J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Reports 366 (2002) 103-182.
  • [25] E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Reports 376 (2003) 225-337.
  • [26] E. Abe, Y. Yan, S.J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 3 (2004) 759-767.
  • [27] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physics Review B 70 (2004) 94202-94206.
  • [28] V. G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami, Uspekhi Fizicheskikh Nauk 92 (1968) 517-529. [29] D.R. Smith, W. J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite Medium with Negative Permeability and Permittivity, Physical Review Letters 84 (2000) 4184-4187.
  • [30] E. Cubukcu, K. Aydin, E. Ozbay S. Foteinopoulou, C.M. Soukoulis, Subwavelength Resolution in a Two- Dimensional Photonic-Crystal-Based Superlens, Physical Review Letters 91 (2003) 207401.
  • [31] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423 (2003) 604-605.
  • [32] K. Yu. Bliokh, Yu. P. Bliokh, What are the left-handed media and what is interesting about them, Uspekhi Fizicheskikh Nauk 174 (2004) 439.
  • [33] P. Markos, C.M. Soukoulis, Left-handed Materials, avaliable in EBP arXiv:condmat/0212136, (2002).
  • [34] A.L. Pokrovsky, A. L. Efros, Sign of refractive index and group velocity in left-handed media, Solid State Communication 124 (2002) 283-287.
  • [35] C.M. Krowne, Y. Zhang, (Eds), Physics of Negative Refraction and Negative Index Materials, Publishing house Springer-Verlag Berlin Heidelberg, 2007.
  • [36] S.A. Ramakrishna, T.M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press, 2009.
  • [37] A. Klauzer-Kruszyna, Propagation of polarized light in selected aperiodic superstructures, PhD Thesis, Wrocław, 2005 (in Polish).
  • [38] S. Garus, M. Duś-Sitek, E. Zyzik, Effect of iron dopant on superlattice FexNi (1-x) / Cu transmission properties, New Technologies and Achievements in Metallurgy and Materials Engineering, Proceedings of the 12th International Scientific Conference, Częstochowa, 2011 (in Polish).
  • [39] S. Garus, J. Garus, K. Gruszka, Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering, Publishing house University of Technologies WIPMiFS Częstochowa (2012) 768-771 (in Polish).
  • [40] L. Jacak, P. Hawrylak, A.Wójs, Quantum Dots, Publishing house Springer-Verlag Berlin Heidelberg, New York, 1998.
  • [41] H.S. Nalwa (Ed.), Nanostructured Materials and Nanotechnology, Academic Press, New York, 2002.
  • [42] M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [43] Z.L. Wang, Y. Liu, Z. Zhang (Eds.) Handbook of nanophase and nanostructured materials 1 Synthesis, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [44] M. Jurczyk, J. Jakubowicz, Ceramic Nanomaterials, Publishing house Poznan University of Technology, Poznań, 2004.
  • [45] W. Steurer, S. Deloudi, Crystallography of Quasicrystals, Springer Series in Materials Science, 126, Publishing house Springer Verlag, Berlin, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-407b4bcb-ec60-4d1c-a65e-1f2eddd78ddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.