PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sorbent-Catalyst for Acceleration of The Iron Oxidation Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the process of water deironing by using magnetite as a catalyst to accelerate the oxidation of iron ions in an aqueous medium was investigated. It was shown that the efficiency of iron ion extraction depends on the solution concentration, sorbent dose and contact time. In all cases, the use of magnetite accelerated the process of extraction of iron by more than an order of magnitude in comparison with similar experiments on the oxidation of iron without the addition of a catalyst. At the pH values greater than 6, the use of magnetite as a catalyst contributes to the deep purification of water from iron ions.
Słowa kluczowe
Rocznik
Strony
221--230
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Biela R., Kučera T. 2016. Efficacy of Sorption Materials for Nickel, Iron and Manganese Removal from Water. Procedia Engineering, 162, 56–63.
  • 2. Biplob Kumar Pramanik, Sagor Kumar Pramanik, Fatihah Suja. 2016. Removal of Arsenic and Iron Removal from Drinking Water Using Coagulation and Biological Treatment. Water Health, 14, 1, 90–96.
  • 3. Chaturvedi S., Dave P.N. 2012. Removal of Iron for Safe Drinking Water. Desalination, 303, 1, 1–11.
  • 4. Doggaz A., Attour A., Le Page Mostefa M., Tlili M., Lapicque F. 2018. Iron Removal from Waters by Electrocoagulation: Investigations of the Various Physicochemical Phenomena Involved. Separation and Purification Technology, 203, 217–225.
  • 5. Giraldo L., Erto A., Moreno-Piraján J.C. 2013. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption, 19, 2–4, 465–474.
  • 6. Goncharuk V.V., Kavitskaya A.A., Skil’skaya M.D. 2011. Nanofiltration in Drinking Water Supply. Journal of Water Chemistry and Technology, 33, 37–54.
  • 7. Gomelya M.D., Tverdokhlib M.М., Vozna I.P. 2020. Mechanism of Sorption-Catalytic Purification of Water from Manganese Ions. Bulletin of NTUU «Igor Sikorsky Kyiv Polytechnic Institute», Series «Chemical engineering, ecology and resource saving», 3, 58–65. (In Ukrainian).
  • 8. Khatri N., Tyagi S., Rawtani D. 2017. Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering, 19, 291–304.
  • 9. Larin G.G., Victorova A.V., Muradova A.G., Yurtov E.V. 2013. Preparation of Fe3O4 Nanoparticles by Aging Fe(OH)2 Sediment. Advances in Chemistry and Chemical Technology, 27(6), 104–107. (In Russian).
  • 10. Podgórni E., Rząsa M. 2014. Investigation of the Effects of Salinity and Temperature on the Removal of Iron from Water by Aeration, Filtration and Coagulation. Polish Journal of Environmental Studies, 23(6), 2157–2161.
  • 11. Radovenchik V.M., Ivanenko O.I., Radovenchik Y.V. and Krisenko T.V. 2020. Application of Ferrite Materials in Water Purification Processes, Monograph. Bila Tserkva: O.V. Pshonkivsky, 215. (In Ukrainian).
  • 12. Rashid H., Mansoor M.A., Haider B., Nasir R., Abd Hamid S.B., Abdulrahman A. 2020. Synthesis and Characterization of Magnetite Nanoparticles with High Selectivity Using In-Situ Precipitation Method. Separation Science and Technology, 55(6), 1207–1215.
  • 13. Ryzhenko B.N., Mironenko M.V., Limantseva O.A. 2019. Equilibrium and Kinetic Simulation of Groundwater Deironing and Demanganation. Geochemistry International, 57, 1306–1319.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4072b320-5e72-43bf-9502-4defb524fe39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.