PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przyczyny i mechanizm powstawania odprysków betonu pod wpływem wysokiej temperatury wywołanej pożarem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Causes and mechanism of concrete spalling under high temperature caused by fire
Języki publikacji
PL EN
Abstrakty
PL
Przedstawiony przegląd obecnej znajomości przyczyn odpryskiwania betonu spowodowanego pożarem wskazuje na dwie główne ich przyczyny: cieplno-mechaniczny i termiczno-wilgotnościowy. Odpryskiwanie betonu występuje wraz ze wzrostem jego wytrzymałości, natomiast nie grozi betonom niskich klas, które mają dużą porowatość otwartą. Stosowanie włókien polipropylenowych nie zawsze zapobiega jego zachodzeniu. Obserwacje uszkodzeń betonu pozwoliły na wyróżnienie czterech rodzajów odpryskiwania w trakcie pożaru: 1) odpryskiwanie kruszywa, 2) odpryskiwanie powierzchniowe, 3) eksplozyjne, 4) odpryskiwanie naroży elementu. Po zakończeniu pożaru występuje piąte jako złuszczania powierzchniowe.
EN
The review of the papers concerning the concrete spalling due to fire exposure are showing two causes: thermo-mechanical and moisture - thermal. Concrete spalling takes place in the case of high strength i.e. HPC, but is not encountered for low grade concrete, which have high porosity. The addition of polypropylene fibres not always can avoid its occurrence. The observation of concrete damages allowed to distinguish four forms of spalling: 1) spalling of aggregate, 2) surface spalling, 3) explosive spalling, 4) spalling of element corners. After fire the fifth forms is known as surface exfoliation.
Czasopismo
Rocznik
Strony
445--456
Opis fizyczny
Bibliogr. 69 poz., il.
Twórcy
autor
  • Politechnika Krakowska im. Tadeusza Kościuszki, Instytut Materiałów i Konstrukcji Budowlanych
autor
  • Politechnika Krakowska im. Tadeusza Kościuszki, Instytut Materiałów i Konstrukcji Budowlanych
Bibliografia
  • 1. C. Perry, J. Gillott, The influence of mortar aggregate bond strength on the behaviour of concrete in uniaxial compression, Cem. Concr. Res. 7, 553-564 (1977).
  • 2. G. Khoury, Fire design of concrete structures - materials, structures and modelling, Federetion Internationale du Beton (fib), Sprint-Digital-Druck, Stuttgart (2007).
  • 3. G.A. Khoury, Y. Anderberg, Concrete spalling - review, Fire Safety Design (2000).
  • 4. K. Brown, C. Marean, A. Herries, Z. Jacobs, C. Tribolo, D. Braun, D. Roberts, Meyer, M. Meyer, J. Bernatchez, Fire As an Engineering Tool of Early Modern Humans 325, 859-862 (2009).
  • 5. H. Wilcke, W. Thunig, Kamieniarstwo, Wydawnictwa Szkolne i Pedagogiczne, Warszawa, 134 (1997).
  • 6. Barrett, On the French and other methods of constructing iron floors, XVI, 90-98 (1854).
  • 7. A.L.A. Himmelwright, The San Francisco earthquake and fire; a brief history of the disaster; a presentation of facts and resulting phenomena, with special reference to the efficiency of building materials, lessons of the disaster, New York: The Roebling construction company (1906).
  • 8. M. Gary, Fire tests on reinforced concrete buildings (in German), Verlag Wilhelm Ernst und Sohn, Heft 11, Germany (1916).
  • 9. C.T.S. Authority, Inquiry into the fire on Heavy Goods Vehicle shuttle 7539 on 18 November 1996, H.M. Stationery Office 1997.
  • 10. Technical Investigation Report concerning the Fire on Eurotunnel Freight Shuttle 7412 on 11 September 2008, BEA-TT, RAIB (2010).
  • 11. Technical Investigation Report Concerning the Fire on Eurotunnel Freight Shuttle 7340 on 17 January 2015, BEA-TT, RAIB 2016.
  • 12. Task force for technical investigation of the 24 March 1999 fire in the Mont Blanc vehicular Tunnel, Minister of the Interior, Ministry of Equipment, Transportation and Housing (1999).
  • 13. P. Kalifa, F. Menneteau, D. Quenard, Spalling and pore pressure in HPC at high temperatures, Cem. Concr. Res., 30, 1915-1927 (2000).
  • 14. I. Hager, Comportement à haute température des bétons à haute performance - évolution des principales propriétés mécaniques. PhD Thesis, l’Ecole Nationale des Ponts et Chaussées and Cracow University of Technology, 65 – 67 (2004).
  • 15. G. Khoury, Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria., Mag Concrete Res 60, 189-204 (2008).
  • 16. R. Connolly, The Spalling of Concrete in Fires. PhD Thesis, The University of Aston in Birmingham 1995.
  • 17. R. Jansson, L. Bostrom, The spalling in concrete - The moisture effect, part II, International Workshop on Concrete Spalling due to Fire Exposure, Paris, France 2013.
  • 18. R. Jansson, L. Bostrom, Fire spalling - the moisture effect, w 1st International Workshop on Concrete Spalling due to Fire Exposure , Leipzig, Germany 2009.
  • 19. P. Kalifa, F. Menneteau, H. Sallee, Moisture and temperature distribution in a specimen heated on one face, BRITE EURAM III Hiteco Programme BE-95-1158, 1998.
  • 20. J.C. Mindeguia, Contribution Expérimentale A La Compréhension Des Risques D’instabilité Thermique Des Bétons. PhD Thesis, Universitè de Pau et des Pays de l’adour 2009.
  • 21. G. Peng, Y. Kang, X. Liu, Q. Chen, J. Zhao, Explosive spalling and residual mechanical properties of Reactive Powder Concrete subjected to high temperature, 2nd International Workshop on Concrete Spalling due to Fire Exposure, Delft, The Netherlands 2011.
  • 22. N. Taillefer, P. Pimienta, D. Dhima, Spalling f concrete: a synthesis of experimental tests on slabs, w 3rd International Workshop on Concrete Spalling due to Fire Exposure, Paris, France 2013.
  • 23. I. Hager, T. Tracz, J. Śliwiński, K. Krzemień, The influence of aggregate type on the physical and mechanical properties of high-performance concrete subjected to high temperature, Fire Mater, 40, 668-682 (2016).
  • 24. M. Heap, Y. Lavallee, A. Laumann, K.U. Hess, P. Meredith, D. Dingwell, S. Huismann, F. Weise, The influence of thermal-stressing (up to 1000C) on the physical, mechanical and chemical properties of siliceous aggregate, high strength concrete, Constr. Build. Mater., 42, 248-256 (2013).
  • 25. U. Schneider, M. Alonso, P. Pimienta, R. Jansson, Physical properties and behaviour of High Performance Concrete at high temperature, RILEM Technical Committee 227-HPB, 2010.
  • 26. I. Hager, T. Zdeb, K. Krzemień, The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of Reactive Powder Concretes, MATEC Web of Conferences 6, 02003, 2013.
  • 27. J. C. Mindeguia, P. Pimienta, A. Noumowe, M. Kanema, Temperature, pore pressure and mass variation of concrete subjected to high temperature - Experimental and numerical discussion on spalling risk, Cem. Concr. Res., 40, 477-487 (2012).
  • 28. J. C. Mindeguia, P. Pimienta, H. Carre, C. La Borderie, Experimental study on the contribution of pore vapour pressure to the thermal instability risk of concrete, International Workshop on Concrete Spalling due to Fire Exposure, Leipzig, Germany 2009.
  • 29. H. Carré, P. Pimienta, C. La Borderie , F. Pereira, J.C. Mindeguia, Effect of compressive loading on the risk of spalling, MATEC Web of Conferences 6, 01007, 2013.
  • 30. L. Boström, R. Jansson, Self-Compacting Concrete Exposed to Fire, SP Technical Research Institute of Sweden, Borås 2008.
  • 31. RILEM Technical Committee 256-SPF: Spalling of concrete due to fire: testing and modelling, [Online]. Available: https://www.rilem.net/groupe/256-spf-spalling-of-concrete-due-to-fi re-testing-and-modelling-309. [12.08.2017].
  • 32. I. Hager, P. Pimienta, Mechanical properties of HPC at High Temperature, Workshop Fire Design of Concretes: What now? What next?, Milan, Italy, 95 – 100, 2004.
  • 33. I. Hager, T. Tracz, Wpływ wysokiej temperatury na wybrane właściwości betonu wysokowartościowego z dodatkiem włókien polipropylenowych, (Influence of high temperature on selected properties of high performance concrete modified by the addition of polypropylene fibres), Cement Wapno Beton, 1, 3-10 (2009).
  • 34. G. A. Khoury, Y. Anderberg, Fire Safety Design. Concrete spalling - review, Swedish National Road Administration, 2000.
  • 35. A. Bolewski, Mineralogia Szczegółowa, Wydawnictwa Geologiczne, 609 – 617, 1965.
  • 36. G. Debicki, R. Haniche, F. Delhomme, An experimental method for assessing the spalling sensitivity of concrete mixture submitted to high temperature, Cem. Concr. Comp., 34, 958 – 963 (2012).
  • 37. D. Cook, M. Haque, The effect of sorption on the tensile creep and strength reduction of desiccated concrete, Cem. Concr. Res., 4, 367-379 (1974).
  • 38. Lahanas, Ancient Greek Artillery Technology from Catapults to the Architronio Canon, [Online]. Available: http://www.hellenicaworld.com. [30.06.2017].
  • 39. K. Willam, K. Lee, Y. Xi, G. Xotta, V. Salomoni, Explosive spalling of concrete materials under extreme environments, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, Delft, The Netherlands 2011.
  • 40. E. Richter, Fire test on single-shell tunnel segments made of a new high-performance fireproof concrete, Workshop Fire Design of Concrete Structures: What now? What next?, 261-270, 2004.
  • 41. D. Gawin, F. Pesavento, B. Schrefler, Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and me chanical material degradation, Computer Methods in Applied Mechanics and Engineering 192, 1731-1771 (2003).
  • 42. D. Gawin, F. Pesavento, Prediction of the thermal spalling risk of concrete structures exposed to high temperatures, ACEE 1, 49-60 (2009).
  • 43. I. Hager, T. Tracz, K. Krzemień, The usefulness of selected non-destructive and destructive methods in the assessment of concrete after fire, Cement Wapno Beton 3, 145-151 (2014).
  • 44. Instytut Techniki Budowlanej, [Online]. www.itb.pl/. [10.08.2017].
  • 45. ISO 834-1: Fire resistance tests. Elements of building construction - Part 1: General requirements, International Organization for Standardization 1999.
  • 46. EN 1363-2: Fire resistance tests. Alternative and additional procedures, BSI CO TO?, 1999.
  • 47. H. Carré, P. Pimienta, C. La Borderie , F. Pereira, J.C. Mindeguia, Effect of compressive loading on the risk of spalling, MATEC Web of Conferences 6, 01007, 2013.
  • 48. R. Jansson, L. Boström, Spalling of concrete exposed to fire, SP Technical Research Institute of Sweden, Borås 2008.
  • 49. A. Heel, W. Kusterle, Die Brandbeständigkeit von Faser-, Stahl- und Spannbeton [Fire resistance of fiber-reinforced, reinforced, and prestressed concrete] (in German), Tech. Rep. 544, Bundesministerium für Verkehr, Innovation und Technologie, Vienna 2004.
  • 50. K. Krzemień, I. Hager, Assessment of concrete susceptibility to fire spalling: A report on the state-of-the-art in testing procedures, Procedia Engineering, 108, 285-292 (2015).
  • 51. D. Hertz, Limits of spalling of fire-exposed concrete, Fire Safety Journal, 38, 103-116 (2003).
  • 52. T. Tanibe, M. Ozawa, R. Kamata, R. Sato, K. Rokugo, Thermal stress estimation in relation to spalling of HSC restrained with steel rings at high temperatures, MATEC Web of Conferences 6, 01004, 2013.
  • 53. P. Kalifa, G. Chene, C. Galle, High-temperature behaviour of HPC with polypropylene fibres. From spalling to microstructure, Cem. Concr. Res., 31, 1487 - 1499 (2001).
  • 54. FIB, Fire design of concrete structures - materials, structures and modelling, Bulletin 38, Laussane, Switzerland 2007.
  • 55. H. Malhotra, Spalling of concrete in fires. Technical note 118, Construction Industry Research and Information Association, London 1984.
  • 56. L. Phan, Spalling and mechanical properties of high strength concrete at high temperature, w Concrete under Severe Conditions: Environment & Loading, F. Toutlemonde et al. (eds), Tours, Francja 2007.
  • 57. I. Hager, T. Tracz, Parameters influencing concrete spalling severity - intermediate scale tests results, 4th International RILEM Workshop on Concrete Spalling due to Fire Exposure, Leipzig, Germany 2015.
  • 58. C. Meyer-Ottens, The question of spalling of concrete structural elements of standard concrete under fire loading, PhD Thesis, Technical University of Braunschweig, Germany 1972.
  • 59. C. Mayer-Ottens, Behaviour of concrete structural members in fire consitions (in German), Beton 4, 133 - 136 (1974).
  • 60. C. Majorana, V. Salomoni, G. Mazzucco, G. Khoury, An approach for modelling concrete spalling in finite strains, Mathematics and Computers in Simulation, 80 (2010).
  • 61. G. Shorter, T. Hermathy, Discussion on the Fire Resistance of Prestresses Concrete Beams, Proceedings of the Institution of Civil Engineering, 20, 313 (1961).
  • 62. I. Hager, T. Tracz, The impact of the amount and length of fibrillated polypropylene fibres on the properties of HPC exposed to high temperature, Archives of Civil Engineering 56, 57 – 68 (2010).
  • 63. P. Tatnall, Shortcrete in Fires: Effects of fibers on explosive spalling, Shortcrete, 10-12 (2002).
  • 64. EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, (English) (2004).
  • 65. K. Pistol, F. Weise, B. Meng, U. Schneider, The mode of action of polypropylene fibres in high performance concrete at high temperatures, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, Delft, The Netherlands 2011.
  • 66. P. Sullivan, Deterioration and spalling of high strength concrete under fire, Report for UK Health & Safety Executive, City University London 2001.
  • 67. D. Bentz, Fibres, Percolation, and Spalling of High Performance Concrete, ACI Materials Journal 97, 351-359 (2000).
  • 68. I. Hager, T. Zdeb, K. Krzemień, The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of Reactive Powder Concretes, MATEC Web of Conferences, 6, 02003 (2013).
  • 69. D. Hertz, Heat induced explosion on fire behaviour of concrete, Denmark: Report no. 166, Institute of Building Design, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4066dc5c-292c-4f9c-b11e-dc774f8e4999
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.