PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Development of an artificial intelligence model based on MobileNetV3 for early detection of dental caries using smartphone images: A preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavities are among the most common dental health problems and significantly impact the quality of life, particularly in developing countries. Early detection of dental caries is a crucial step in preventing further complications; however, conventional methods such as clinical examinations and radiography are often inaccessible due to infrastructure and cost limitations. This study aims to develop an Artificial Intelligence (AI) model based on MobileNetV3 Small for detecting dental caries using images captured with a basic smartphone camera. MobileNetV3 Small was selected for its high computational efficiency and ability to operate on low-specification devices. The dataset used comprises 1,200 dental images, including both healthy teeth and teeth with cavities. The images were taken under varying lighting conditions and resolutions to reflect real-world scenarios. The model was trained using transfer learning and evaluated on a validation dataset using accuracy, sensitivity, and specificity metrics. The results demonstrated that the model achieved 90% accuracy, 90% precision, and 90% recall, highlighting its potential for real-time applications. These findings suggest that MobileNetV3 Small can serve as a practical, cost-effective, and accessible solution for early detection of dental caries using everyday devices like smartphones. This technology has the potential to improve access to dental health services, support early detection initiatives, and reduce the prevalence of dental caries. This research provides a foundation for further development of AI applications in healthcare, particularly in developing countries.
Twórcy
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Mechanical Engineering, Universitas Syiah Kuala, Jln. Syech Abdurrauf No.7 Darussalam, Banda Aceh 23111, Indonesia
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Tan M., Chen B., Pang R., Vasudevan V., Sandler M., Howard A., Le Q. L. MnasNet: Platform-Aware Neural Architecture Search for Mobile. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, 2815–2823. https://doi.org/10.1109/CVPR.2019.00293.
  • 2. Pramanik P. K. D., Sinhababu N., Mukherjee B., Padmanaban S., Maity A., Upadhyaya B. K., Holm-Nielsen J. B., Choudhury P. Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage. IEEE Access, 2019, 7, 182113–182172. https://doi.org/10.1109/ACCESS.2019.2958684.
  • 3. Reddy C. K., Gopal V., Cutler R., Beyrami E., Cheng R., Dubey H., Matusevych S., Aichner R., Aazami A., Braun S., Rana P. The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Testing Framework, and Challenge Results, in Interspeech 2020, ISCA, Oct. 2020, 2492–2496. https://doi.org/10.21437/Interspeech.2020-3038.
  • 4. Ren Y. F., Rasubala L., Malmstrom H., Eliav E. Dental care and oral health under the clouds of COVID-19, JDR Clin. Transl. Res., Jul. 2020, 5(3), 202–210, https://doi.org/10.1177/2380084420924385.
  • 5. Szabó S., Feier B., Capatina D., Tertis M., Cristea C., Popa A. An overview of healthcare associated infections and their detection methods caused by pathogen bacteria in Romania and Europe, J. Clin. Med., Jun. 2022, 11(11), 3204, https://doi.org/10.3390/jcm11113204.
  • 6. Haleem A., Javaid M., Singh R. P., Suman R. Telemedicine for Healthcare: Capabilities, Features, Barriers, and Applications. Sens. Int., 2021, 2, 100117. https://doi.org/10.1016/j.sintl.2021.100117.
  • 7. Liang Y., Fan H. W., Fang Z., Miao L., Li W., Zhang X., Sun W., Wang K., He L., Chen X. A. OralCam: Enabling Self-Examination and Awareness of Oral Health Using a Smartphone Camera. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020, 1–13. https://doi.org/10.1145/3313831.3376238.
  • 8. Doermann D., Liang J., Li H. Progress in Camera-Based Document Image Analysis. Seventh International Conference on Document Analysis and Recognition, Proceedings, Edinburgh, UK: IEEE Comput. Soc, 2003, 606–616. https://doi.org/10.1109/ICDAR.2003.1227735.
  • 9. Qian S., Ning C. and Hu Y. MobileNetV3 for Image Classification, 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 2021, 490–497, https://doi.org/10.1109/ICBAIE52039.2021.9389905.
  • 10. Guo C., Zhou Q., Jiao J., Li Q., and Zhu L. A modified MobileNetV3 model using an attention mechanism for eight-class classification of breast cancer pathological images. Applied Sciences 2024, 14(17), 7564. https://doi.org/10.3390/app14177564.
  • 11. Kumar L. U., et al. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization, Sci. Rep., Feb. 2024, 14(1), 4299, https://doi.org/10.1038/s41598-024-54212-8.
  • 12. Felsch M., et al. Detection and localization of caries and hypomineralization on dental photographs with a vision transformer model, Npj Digit. Med., Oct. 2023, 6(1), 198, https://doi.org/10.1038/s41746-023-00944-2.
  • 13. Vaidyam A., Halamka J., and Torous J. Enabling research and clinical use of patient-generated health data (the mindLAMP Platform): Digital phenotyping study, JMIR MHealth UHealth, Jan. 2022, 10(1), e30557, https://doi.org/10.2196/30557.
  • 14. Wu Y., Sun Y., Zhang S., Liu X., Zhou K., and Hou J. A size-grading method of antler mushrooms using YOLOv5 and PSPNet. Agronomy, 2022, 12(11), 2601. https://doi.org/10.3390/agronomy12112601.
  • 15. Maity A., Nair T. R., and Chandra A. Image Pre-processing techniques comparison: COVID-19 detection through Chest X-Rays via Deep Learning, Int. J. Sci. Res. Sci. Technol., Nov. 2020, 113–123, https://doi.org/10.32628/IJSRST207614.
  • 16. Hassanien M. A., Singh V. K., Puig D., and Abdel-Nasser M. Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences, Diagnostics, Apr. 2022, 12(5), 1053, https://doi.org/10.3390/diagnostics12051053.
  • 17. Haleem A., Javaid M., Singh R. P., and Suman R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications, Internet Things Cyber-Phys. Syst., 2022, 2, 12–30, https://doi.org/10.1016/j.iotcps.2022.04.001.
  • 18. Dailah H. G. Mobile health (mHealth) technology in early detection and diagnosis of oral cancer-a scoping review of the current scenario and feasibility, J. Healthc. Eng., 2022, 1–11, https://doi.org/10.1155/2022/4383303.
  • 19. Jiang J., Jiang X., Xu L., Zhang Y., Zheng Y., and Kong D. Noise-robustness test for ultrasound breast nodule neural network models as medical devices, Front. Oncol., Jun. 2023, 13, 1177225, https://doi.org/10.3389/fonc.2023.1177225.
  • 20. Kumar S., et al. Proof-of-Concept: Smartphone- and Cloud-Based Artificial Intelligence Quantitative Analysis System (SCAISY) for SARS-CoV-2-Specific IgG Antibody Lateral Flow Assays, Biosensors, Jun. 2023, 13(6), 623, https://doi.org/10.3390/bios13060623.
  • 21. Shakhatreh H., et al. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges, IEEE Access, 2019, 7, 48572–48634, https://doi.org/10.1109/ACCESS.2019.2909530.
  • 22. Senjam S. S., Manna S., and Bascaran C. Smartphones-based assistive technology: Accessibility features and apps for people with visual impairment, and its usage, challenges, and usability testing, Clin. Optom., Nov. 2021, 13, 311–322, https://doi.org/10.2147/OPTO.S336361.
  • 23. Liu L., Xu J., Huan Y., Zou Z., Yeh S.-C., and Zheng L.-R. A smart dental health-IoT platform based on intelligent hardware, deep learning, and mobile terminal, IEEE J. Biomed. Health Inform., Mar. 2020, 24(3), 898–906, https://doi.org/10.1109/JBHI.2019.2919916.
  • 24. Al‐Nasser L. and Lamster I. B. Prevention and management of periodontal diseases and dental caries in the older adults, Periodontol. 2000, 84(1), 69–83, Oct. 2020, https://doi.org/10.1111/prd.12338.
  • 25. Kühnisch J., Meyer O., Hesenius M., Hickel R., and Gruhn V. Caries detection on intraoral images using artificial intelligence, J. Dent. Res., Feb. 2022, 101(2), 158–165, https://doi.org/10.1177/00220345211032524.
  • 26. Wang C., Qin J., Qu C., Ran X., Liu C., and Chen B. A smart municipal waste management system based on deep-learning and Internet of Things, Waste Manag., Nov. 2021, 135, 20–29, https://doi.org/10.1016/j.wasman.2021.08.028.
  • 27. Kavyashree P. S. P. and El-Sharkawy M. Compressed MobileNet V3: A Light Weight Variant for Resource-Constrained Platforms, in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), NV, USA: IEEE, Jan. 2021, 0104–0107. https://doi.org/10.1109/CCWC51732.2021.9376113.
  • 28. Kim K., Kim B., and Lee C. H. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems, Adv. Mater., Apr. 2020, 32(15), 1902051, https://doi.org/10.1002/adma.201902051.
  • 29. Kulkov I., Kulkova J., Leone D., Rohrbeck R., and Menvielle L. Stand-alone or run together: artificial intelligence as an enabler for other technologies, Int. J. Entrep. Behav. Res., Sep. 2024, 30(8), 2082–2105, https://doi.org/10.1108/IJEBR-02-2023-0169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-405c12cb-6afc-4ee6-8579-88758dc7e69b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.