PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Context-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Within the framework of the possibility of using the Mediterranean pen shell Pinna nobilis in restoration and conservation plans of benthic habitats, an in situ experiment was conducted using empty P. nobilis shells. The latter were transplanted in a bare soft-bottomed area and their associated fauna were followed along 120 days and compared at different temporal points and with the assemblages living in the surrounding soft-sediment area. Compared to soft-sediment communities, an evidently increasing succession of species richness, abundance, and diversity descriptors (Shannon-Wiener H′ and Pielou's evenness J′) was observed with the community inhabiting empty Pinna shells. Among the forty-five (45) species found in association with the transplanted empty shells, seventeen (17) were found constantly in the three temporal points; the other twenty-eight (28) species appeared in the samples collected in the second and/or third sampling time. While motile and sessile species associated to Pinna shells showed an increasing pattern of appearance and abundance along the experiment time, those of soft sediment remained almost constant. The comparison between Pinna shells and soft-sediment associated communities showed that the species richness was slightly different between the two different sample types (49 for soft sediment versus 45 for empty Pinna shells); however the total abundance was found more important with empty Pinna shells. The results obtained herein argue in favor of the important engineering effect of P. nobilis in soft benthic habitats and therefore for the necessity of its conservation.
Czasopismo
Rocznik
Strony
342--348
Opis fizyczny
Bibliogr. 63 poz., rys., tab., mapy
Twórcy
autor
  • Zoological Institute Russian Academy of Sciences, St. Petersburg, Russia
autor
  • Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Åbo, Finland
autor
  • Russian State Hydrometeorological University, St. Petersburg, Russia
autor
  • Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
autor
  • Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
autor
  • Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
Bibliografia
  • Bastrop, R., Blank, M., 2006. Multiple invasions — a polychaete genus enters the Baltic Sea. Biol. Invasions 8, 1195—1200, http://dx. doi.org/10.1007/s10530-005-6186-6.
  • Berke, S.K., 2010. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50 (2), 147—157, http://dx.doi.org/10.1093/icb/icq077.
  • Blank, M., Laine, A.O., Jürss, K., Bastrop, R., 2008. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species' current distribution in the Baltic Sea. Helgol. Mar. Res. 62, 129—141, http://dx.doi.org/10.1007/s10152-007-0081-8.
  • Bonaglia, S., Bartoli, M., Gunnarsson, J.S., Rahm, L., Raymond, C., Svensson, O., Shakeri Yekta, S., Brüchert, V., 2013. Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Mar. Ecol. Prog. Ser. 482, 43—55, http:// dx.doi.org/10.3354/meps10232.
  • Bonsdorff, E., 2006. Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J. Exp. Mar. Biol. Ecol. 330, 383—391, http://dx.doi.org/10.1016/j. jembe.2005.12.041.
  • Bouma, T.J., Olenin, S., Reise, K., Ysebaer, T., 2009. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol. Mar. Res. 63, 95—106, http://dx.doi.org/10.1007/ s10152-009-0146-y.
  • Bulgakov, N.G., Levich, A.P., 1999. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Arch. Hydrobiol. 146 (1), 3—22.
  • Caliman, A., Carneiro, L.S., Bozell, R.L., Farjalla, V.F., Esteves, F.A., 2011. Bioturbating space enhances the effects of non-additive interactions among benthic ecosystem engineers on cross-habitat nutrient regeneration. Oikos 120, 1639—1648, http://dx.doi.org/ 10.1111/j.1600-0706.2011.19362.x.
  • Conley, D.J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B.G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H.E.M., Müller-Karulis, B., Kjell Nordberg, Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N.N., Rosenberg, R., Savchuk, O.P., Slomp, C.P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43 (10), 3412— 3420, http://dx.doi.org/10.1021/es802762a.
  • Darwin, C., 1881. The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits. Murray, London.
  • Denisenko, S., Sandler, H., Denisenko, N., Rachor, E., 1999. Current state of zoobenthos in two estuarine bays of the Barents and Kara Seas. ICES J. Mar. Sci. 56 (Suppl.), 187—193, http://dx.doi.org/ 10.1006/jmsc.l999.0633.
  • Diaz, R.J., Rosenberg, R., 2001. Overview of anthropogenically- induced hypoxic effects on marine benthos. In: Rabalias, N.T., Turner, R.E. (Eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems, vol. 58. Am. Geophys. Union, Washington, 129—145.
  • Elmgren, R., 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. ICES Rapp. Proc. Verb. 183, 152—169.
  • Eremina, T.R., Maximov, A.A., Voloshchuk, E.V., 2012. The influence of the climate's variability on the deep-water oxygen conditions in the east of the Gulf of Finland. Oceanology 52, 771—779, http:// dx.doi.org/10.1134/S0001437012060045.
  • Eremina, T., Voloshchuk, E., Maximov, A., Ryabchenko, V., 2014. Biogeochemical changes on the sediment-water interface due to Marenzelleria spp. invasion in the eastern Gulf of Finland.In: Baltic Earth — Gulf of Finland Year 2014 Modeling Workshop. International Baltic Earth Secretariat Publication 4, p. 11.
  • Ezhova, E., Zmudzinski, L., Maciejewska, K., 2005. Long-term trends in the macrozoobenthos of the Vistula Lagoon, southerstern Baltic Sea. Species composition and biomass distribution. Bull. Sea Fish. Inst. 1 (164), 55—73.
  • Gran, V., Pitkänen, H., 1999. Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393, 107— 115.
  • Granberg, M.E., Gunnarsson, J.S., Hedman, J.E., Rosenberg, R., Jonsson, P., 2008. Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ. Sci. Technol. 42, 1058—1065, http://dx.doi.org/10.1021/es071607j.
  • Hedman, J.E., Gunnarsson, J.S., Samuelsson, G., Gilbert, F., 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J. Exp. Mar. Biol. Ecol. 407 (2), 294—301, http://dx.doi.org/ 10.1016/j.jembe.2011.06.026.
  • HELCOM, 2009. Eutrophication in the Baltic Sea — an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. In: Baltic Sea Environ. Proc. 115B. 1—148.
  • Hietanen, S., Laine, A.O., Lukkari, K., 2007. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrients dynamics. J. Exp. Mar. Biol. Ecol. 352, 89—102, http://dx.doi. org/10.1016/j.jembe.2007.07.018.
  • Jirkov, I.A., 2001. Polychaetes of the Arctic Ocean. Yanus-K, Moscow, (in Russian).
  • Josefson, A., Norkko, J., Norkko, A., 2012. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Mar. Ecol. Prog. Ser. 455, 33—49, http://dx.doi.org/10.3354/meps09661.
  • Karlson, A.M.L., Näslund, J., Rydén, S.B., Elmgren, R., 2011. Polychaete invader enhances resource utilization in a species-poor system. Oecologia 166, 1055—1065, http://dx.doi.org/10.1007/ s00442-011-1936-x.
  • Karlson, K., Bonsdorff, E., Rosenberg, R., 2007a. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. AMBIO 36 (2—3), 161—167.
  • Karlson, K., Hulth, S., Ringdahl, K., Rosenberg, R., 2005. Experimental recolonisation of Baltic Sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling. Mar. Ecol. Prog. Ser. 294, 35—49.
  • Karlson, K., Hulth, S., Rosenberg, R., 2007b. Density of Monoporeia affinis and biogeochemistry in Baltic Sea sediments. J. Exp. Mar. Biol. Ecol. 344, 123—135, http://dx.doi.org/10.1016/j. jembe.2006.11.016.
  • Karlsson, O.M., Jonsson, P.O., Lindgren, D., Malmaeus, J.M., Stehn, A., 2010. Indications of recovery from hypoxia in the inner Stock-holm archipelago. AMBIO 39, 486—495, http://dx.doi.org/ 10.1007/s13280-010-0079-3.
  • Kauppi, L., Norkko, A., Norkko, J., 2015. Large-scale species invasion into a low-diversity system: spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biol. Invasions 17, 2055—2074, http://dx.doi.org/10.1007/ s10530-015-0860-0.
  • Kristensen, E., Hansen, T., Delefosse, M., Banta, G.T., Quintana, C. O., 2011. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Mar. Ecol. Prog. Ser. 425, 125—139, http://dx.doi.org/10.3354/meps09007.
  • Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., Banta, G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285—302, http://dx.doi.org/10.3354/ meps09506.
  • Kube, J., Zettler, M.L., Gosselck, F., Ossig, S., Powilleit, M., 1996. Distribution of Marenzelleria viridis (Polychaeta: Spionidae) in the Southwestern Baltic Sea in 1993/94 — ten years after introduction. Sarsia 81, 131—142.
  • Levich, A.P., 1996. The role of nitrogen-phosphorus ratio in selecting for dominance of phytoplankton by cyanobacteria or green algae and its application to reservoir management. J. Aquat. Ecosyst. Health 55—61.
  • Levin, L.A., Ekau, W., Gooday, A.J., Jorissen, F., Middelburg, J.J., Naqvi, W., Neira, C., Rabalais, N.N., Zhang, J., 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063—2098.
  • Maximov, A., 2006. Causes of the bottom hypoxia in the eastern part of the Gulf of Finland in the Baltic Sea. Oceanology 46 (2), 185— 191, http://dx.doi.org/10.1134/S0001437006020056.
  • Maximov, A., 2011. Large-scale invasion of Marenzelleria spp. (Polychaeta; Spionidae) in the eastern Gulf of Finland, Baltic Sea. Russ. J. Biol. Invasions 2 (1), 11—19, http://dx.doi.org/10.1134/ S2075111711010036.
  • Maximov, A.A., Eremina, T.R., Lange, E.K., Litvinchuk, L.F., Maximova, O.B., 2014. Regime shift in ecosystem of the eastern Gulf of Finland due to invasion of polychaetes Marenzelleria arctia. Oceanology 54 (1), 52—59, http://dx.doi.org/10.1134/ S0001437013060052.
  • Meysman, F.J.R., Middelburg, J.J., Heip, C.H.R., 2006. Bioturbation: a fresh look at Darwin's last idea. Trends Ecol. Evol. 21, 688—695, http://dx.doi.org/10.1016/j.tree.2006.08.002.
  • Middelburg, J.J., Levin, L.A., 2010. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 1273—1293.
  • Norkko, A., Jaale, M., 2008. Trends in soft sediment macrozoobenthic communities in the open sea areas of the Baltic sea. MERI — Report Series of the Finnish Institute of Marine Research 62, 73—79.
  • Norkko, J., Reed, D.C., Timmermann, K., Norkko, A., Gustafsson, B. G., Bonsdorff, E., Slomp, C.P., Carstensen, J., Conley, D.J., 2012. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biol. 18 (2), 422—434, http://dx.doi. org/10.1111/j.1365-2486.2011.02513.x.
  • Norling, K., Rosenberg, R., Hulth, S., Grémare, A., Bonsdorff, E., 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar. Ecol. Prog. Ser. 332, 11—23.
  • Quintana, C.O., Hansen, T., Delefosse, M., Banta, G., Kristensen, E., 2011. Burrow ventilation and associated porewater irrigation by the polychaete Marenzelleria viridis. J. Exp. Mar. Biol. Ecol. 397, 179—187, http://dx.doi.org/10.1016/j.jembe.2010.12.006.
  • Quintana, C.O., Kristensen, E., Valdemarsen, T., 2013. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115, 95—109, http://dx.doi.org/10.1007/s10533-012-9820-2.
  • Quintana, C.O., Tang, M., Kristensen, E., 2007. Simultaneous study of particle reworking, irrigation transport and reaction rates in sediment bioturbated by the polychaetes Heteromastus and Marenzelleria. J. Exp. Mar. Biol. Ecol. 352, 392—406.
  • Renz, J.R., Forster, S., 2013. Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnol. Oceanogr. 58 (6), 2046—2058, http://dx.doi.org/ 10.4319/lo.2013.58.6.2046.
  • Renz, J.R., Forster, S., 2014. Effects of bioirrigation by the three sibling species of Marenzelleria spp. on solute fluxes and pore-water nutrient profiles. Mar. Ecol. Prog. Ser. 505, 145—159.
  • Rumohr, H., Bonsdorff, E., Pearson, T.H., 1996. Zoobenthic succession in Baltic sedimentary habitats. Arch. Fish. Mar. Res. 44 (3), 179—214.
  • Savchuk, O.P., 2010. Large-scale dynamics of hypoxia in the Baltic Sea. In: Yakushev, E.V. (Ed.), Chemical Structure of Pelagic Redox Interfaces, Observation and Modeling. Springer-Verlag, Berlin, Heidelberg, 137—160.
  • Sikorski, A., Bick, A., 2004. Revision of Marenzelleria Mesnil, 1896 (Spionidae, Polychaeta). Sarsia 89, 253—275.
  • Sikorski, A.V., Buzhinskaya, G.N., 1998. Genus Marenzelleria (Polychaeta, Spionidae) in the Russian Seas. Zoolog. Zh. 77 (10), 1111— 1120, (in Russian).
  • Skei, J., Larsson, P., Rosenberg, R., Jonsson, P., Olsson, M., Broman, D., 2000. Eutrophication and contaminants in aquatic ecosystems. AMBIO 29 (4), 184—194, http://dx.doi.org/10.1579/0044- 7447-29.4.184.
  • Solan, M., Cardinale, B.J., Downing, A.L., Engelhardt, K.A.M., Ruesink, J.L., Srivastava, D.S., 2004. Extinction and ecosystem function in the marine benthos. Science 306, 1177—1180, http://dx. doi.org/10.1126/science.1103960.
  • Steckbauer, A., Duarte, C.M., Carstensen, J., Vaquer-Sunyer, R., Conley, D.J., 2011. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environ. Res. Lett. 6, 025003, http://dx.doi.org/10.1088/1748-9326/6/2/025003 12 pp.
  • Stief, P., 2013. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications. Biogeosciences 10, 7829—7846, http://dx. doi.org/10.5194/bg-10-7829-2013.
  • Straube, D., Johnson, E.A., Parkinson, D., Scheu, S., Eisenhauer, N., 2009. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos 118 (6), 885—896, http://dx.doi.org/10.1111/j.1600-0706.2009.17405.x.
  • Timmermann, K., Norkko, J., Janas, U., Norkko, A., Gustafsson, B. G., Bonsdorff, E., 2012. Modelling macrofaunal biomass in relation to hypoxia and nutrient loading. J. Mar. Syst. 105, 60—69.
  • Urban-Malinga, B., Warzocha, J., Zalewski, M., 2013. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. J. Sea Res. 80, 25—34, http://dx.doi.org/10.1016/j.seares.2013.02.005.
  • Vahtera, E., Conley, D.J., Gustafsson, B.G., Kuosa, H., Pitkänen, H., Savchuk, O.P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., Wulff, F., 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. AMBIO 36 (2), 186—194.
  • Viitasalo-Frösén, S., Laine, A., Lehtiniemi, M., 2009. Habitat modification mediated by motile surface stirrers versus semi-motile burrowers: potential for a positive feedback mechanism in a eutrophied ecosystem. Mar. Ecol. Prog. Ser. 376, 21—32, http://dx.doi.org/10.3354/meps07788.
  • Villnäs, A., Norkko, A., 2011. Benthic diversity gradients and shifting baselines: implications for assessing environmental status. Ecol. Appl. 21, 2172—2186, http://dx.doi.org/10. 1890/10-1473.1.
  • Villnäs, A., Norkko, J., Lukkari, K., Hewitt, J., Norkko, A., 2012. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS ONE 7 (10), e44920, http://dx.doi.org/10.1371/journal.pone.0044920.
  • Zettler, M.L., Daunys, D., Kotta, J., Bick, A., 2002. History and success of invasion into the Baltic Sea: the polychaete Marenzelleria cf. viridis, development and strategies. In: Leppakoski, et al. (Eds.), Invasive Aquatic Species of Europe. Kluwer Academic Publishers, 66—75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-405be0e9-80dc-499d-a9f3-5f1fd6a359ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.