PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green-strategic analysis of the use of pellets from selected wood and waste materials for heating purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ekologiczno-strategiczna analiza wykorzystania pelletów z wybranych materiałów drzewnych i odpadowych na cele grzewcze
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibilities of using wood, waste and energy plant biomass as a material for the production of fuels in the form of pellets. Pine sawdust, energy willow chips, sunflower husk and corn straw were analysed. The materials were pelletized. Selected physicochemical properties and elemental composition were determined. It has been shown that the best alternative to replace wood pellets can be pellets made from both energy willow and sunflower husks. Sunflower husk pellets were selected as the most promising fuel and subjected to a strategic analysis using the SWOT/TOWS method. Based on the analyses, it was shown that sunflower husk pellets, due to their competitive price, appropriate physicochemical parameters and wide availability, can be successfully used as a fuel in boilers adapted to burn wood pellets and more.
PL
W pracy przedstawiono możliwości wykorzystania biomasy drzewnej, odpadowej i pochodzącej z upraw energetycznych jako materiału do produkcji paliw w formie pelletów. Analizie poddano trociny sosnowe, zrębki wierzby energetycznej, łuskę słonecznika i słomę kukurydzianą. Materiały poddano procesowi pelletyzacji. Określono ich wybrane właściwości fizykochemiczne i skład elementarny. Wykazano, że najlepszą alternatywą dla pelletu z drewna mogą być pellety zarówno wytworzone z wierzby energetycznej, jak i łuski słonecznika. Jako najlepiej rokujące paliwo wytypowano pellet z łuski słonecznika i poddano go analizie strategicznej z wykorzystaniem metody SWOT/TOWS. Wykazano, że pellet z łuski słonecznika ze względu na konkurencyjną cenę, odpowiednie parametry fizykochemiczne i szeroką dostępność może być z powodzeniem stosowany jako paliwo w kotłach przystosowanych do spalania pelletów drzewnych i nie tylko.
Rocznik
Tom
Strony
39--49
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Bibliografia
  • Almutairi, K., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., Mostafaeipour, A., Hoa, A. X., & Techato, K. (2021). Determination of optimal renewable energy growth strategies using SWOT analysis, hybrid MCDM methods, and game theory: A case study. International Journal of Energy Research, 46(5), 6766–6789. https://doi.org/10.1002/er.7620
  • Amjith, L. R., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, 293, 133579. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133579
  • Baker, P., Charlton, A., Johnston, C., Leahy, J. J., Lindegaard, K., Pisano, I., Prendergast, J., Preskett, D., & Skinner, C. (2022). A review of Willow (Salix spp.) as an integrated biorefinery feedstock. Industrial Crops and Products, 189, 115823. https://doi.org/10.1016/J.INDCROP.2022.115823
  • Bala-Litwiniak, A. (2019). Possibilities of using selected types of biomass for energy purposes. Material Economy and Logistics Journal, (11), 49–54. https://doi.org/10.33226/1231-2037.2019.11.8
  • Bala-Litwiniak, A. (2021). Environmental and economic aspects of combustion of biomass pellets containing a waste glycerol. Combustion Science and Technology, 193(11), 1998–2008. https://doi.org/10.1080/00102202.2020.1746774
  • Bala-Litwiniak, A., & Kamieniak, K. (2014). Corrosion resistance of the boiler-and chimney steels in the exhaust fume condensates coming from burning of cellulose-waste glycerin based compositions. Ochrona Przed Korozją, (5), 179–183.
  • Bala-Litwiniak, A., & Musiał, D. (2022). Computational and experimental studies of selected types of biomass combustion in a domestic boiler. Materials, 15(14). https://doi.org/10.3390/ma15144826
  • Bala-Litwiniak, A., & Radomiak, H. (2019). Possibility of the utilization of waste glycerol as an addition to wood pellets. Waste and Biomass Valorization, 10(8), 2193–2199. https://doi.org/10.1007/s12649-018-0260-7
  • Bala-Litwiniak, A., & Zajemska, M. (2020). Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renewable Energy, 162, 151–159. https://doi.org/10.1016/j.renene.2020.07.139
  • Bilgili, F., Koçak, E., Bulut, Ü., & Kuækaya, S. (2017). Can biomass energy be an efficient policy tool for sustainable development? Renewable and Sustainable Energy Reviews, 71, 830–845. https://doi.org/10.1016/J.RSER.2016.12.109
  • Borkowska, H., & Molas, R. (2012). Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass and Bioenergy, 36, 234–240. https://doi.org/10.1016/J.BIOMBIOE.2011.10.025
  • Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. https://doi.org/10.1016/j.fuel.2007.05.041
  • Cherubini, F., Peters, G. P., Berntsen, T., Stromman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy, 3(5), 413–426. https://doi.org/10.1111/j.1757-1707.2011.01102.x
  • European Biofuels Technology Platform. (2008). Strategic Research Agenda & Strategy Deployment Document, (January).
  • Grudziński, Z. (2013). Koszty środowiskowe wynikające z użytkowania węgla kamiennego w energetyce zawodowej. Rocznik Ochrona Srodowiska, 15(1), 2249–2266.
  • Hardy, T., Musialik-Piotrowska, A., Ciolek, J., Mościcki, K., & Kordylewski, W. (2012). Negative effects of biomass combustion and co-combustion in boilers. Environment Protection Engineering, 38(1), 25–33.
  • Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis – where are we now? A review of academic research from the last decade. Journal of Strategy and Management, 3(3). https://doi.org/10.1108/17554251011064837
  • IPCC. (2018). Global Warming of 1.5 oC. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. https://www.ipcc.ch/sr15/
  • Kougioumtzis, M. A., Kanaveli, I. P., Karampinis, E., Grammelis, P., & Kakaras, E. (2021). Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency. Renewable Energy, 171, 516–525. https://doi.org/10.1016/J.RENENE.2021.02.118
  • Long, X. H., Shao, H. B., Liu, L., Liu, L. P., & Liu, Z. P. (2016). Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, 54, 1382–1388. https://doi.org/10.1016/J.RSER.2015.10.063
  • Mateus, M. M., Neuparth, T., & Cecílio, D. M. (2023). Modern kiln burner technology in the current energy climate: Pushing the limits of alternative fuel substitution. Fire, 6(2). https://doi.org/10.3390/fire6020074
  • Mckendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(July), 37–46. https://doi.org/10.1016/s0960-8524(01)00118-3
  • Namugenyi, C., Nimmagadda, S. L., & Reiners, T. (2019). Design of a SWOT analysis model and its evaluation in diverse digital business ecosystem contexts. Procedia Computer Science, 159, 1145–1154. https://doi.org/10.1016/j.procs.2019.09.283
  • Obaidullah, M., Bram, S., Verma, V. K., & De Ruyck, J. (2012). A review on particle emissions from small scale biomass combustion. International Journal of Renewable Energy Research, 2(1), 147–159.
  • Ozgen, S., Cernuschi, S., & Caserini, S. (2021). An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews, 135, 110113. https://doi.org/10.1016/j.rser.2020.110113
  • Pawlak-Kruczek, H., Arora, A., Mościcki, K., Krochmalny, K., Sharma, S., & Niedzwiecki, L. (2020). A transition of a domestic boiler from coal to biomass – Emissions from combustion of raw and torrefied Palm Kernel shells (PKS). Fuel, 263. https://doi.org/10.1016/j.fuel.2019.116718
  • Possell, M., Hewitt, C. N., & Beerling, D. J. (2005). The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biology, 11(1), 60–69. https://doi.org/10.1111/j.1365-2486.2004.00889.x
  • Rimár, M., & Kuna, Š. (2013). Design of methodology for wood chips moisture evaluation. Applied Mechanics and Materials, 308, 141–146. https://doi.org/10.4028/www.scientific.net/AMM.308.141
  • Stolarski, M. J., Niksa, D., Krzyżaniak Michałand Tworkowski, J., & Szczukowski, S. (2019). Willow productivity from small- and largescale experimental plantations in Poland from 2000 to 2017. Renewable and Sustainable Energy Reviews, 101, 461–475. https://doi.org/10.1016/j.rser.2018.11.034
  • Sulaiman, C., Abdul-Rahim, A. S., & Ofozor, C. A. (2020). Does wood biomass energy use reduce CO2 emissions in European Union member countries? Evidence from 27 members. Journal of Cleaner Production, 253, 119996. https://doi.org/10.1016/J.JCLEPRO.2020.119996
  • Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z. J., & Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. https://doi.org/10.1016/J.INDCROP.2010.11.014
  • Variny, M., Varga, A., Rimár, M., Janošovský, J., Kizek, J., Lukáè, L., Jablonský, G., & Mierka, O. (2021). Advances in biomass co-combustion with fossil fuels in the European context: A review. Processes, 9(1), 1–34. https://doi.org/10.3390/pr9010100
  • Vassilev, S. V, Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933. https://doi.org/10.1016/j.fuel.2009.10.022
  • Von Cossel, M., Lebendig, F., Müller, M., Hieber, C., Iqbal, Y., Cohnen, J., & Jablonowski, N. D. (2022). Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species. Renewable and Sustainable Energy Reviews, 168, 112814. https://doi.org/10.1016/J.RSER.2022.112814
  • Wang, L., Hustad, J. E., Skreiberg, O., Skjevrak, G., & Gronli, M. (2012). A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia, 20, 20–29. https://doi.org/10.1016/j.egypro.2012.03.004
  • Wang, M., Joel, A. S., Ramshaw, C., Eimer, D., & Musa, N. M. (2015). Process intensification for post-combustion CO2 capture with chemical absorption: A critical review. Applied Energy, 158, 275–291. https://doi.org/10.1016/j.apenergy.2015.08.083
  • Yamagishi, K., Sanosa, A. R., de Ocampo, M., & Ocampo, L. (2021). Strategic marketing initiatives for small co-operative enterprises generated from SWOT-TOWS analysis and evaluated with PROMETHEE-GAIA. Journal of Co-Operative Organization and Management, 9(2), 100149. https://doi.org/10.1016/J.JCOM.2021.100149
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-405a41a8-d96b-4030-9ec9-d82266919825
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.