PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study for deriving stagedischarge - sediment concentration relationships using soft computing techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Knowledge of sediment load carried by any river is essential for designing and planning of hydro power and irrigation projects. So the aim of this study is to develop and evaluating the best soft-computing-based model with M5P and Random Forest regressionbased techniques for computation of sediment using datasets of daily discharge, daily gauge and sediment load at the Champua gauging site of the Upper Baitarani river basin of India. Design/methodology/approach: Last few decades, the soft computing techniques based models have been successfully used in water resources modelling and estimation. In this study, the potential of tree based models are examined by developing and comparing sediment load prediction models, based on M5P tree and Random forest regression (RF). Several M5P and RF based models have been applied to a gauging site of the Baitarani River at Odisha, India. To evaluate the performance of the selected M5P and RF-based models, three most popular statistical parameters are selected such as coefficient of correlation, root mean square error and mean absolute error. Findings: A comparison of the results suggested that RF-based model could be applied successfully for the prediction of sediment load concentration with a relatively higher magnitude of prediction accuracy. In RF-based models Qt, Q(t-1), Q(t-2), S(t-1), S(t-2), Ht and H(t-1) combination based M10 model work superior than other combination based models. Another major outcome of this investigation is Qt, Q(t-1) and S(t-1) based model M4 works better than other input combination based models using M5P technique. The optimum input combination is Qt, Q(t-1) and S(t-1) for the prediction of sediment load concentration of the Baitarani River at Odisha, India. Research limitations/implications: The developed models were tested for Baitarani River at Odisha, India.
Rocznik
Strony
57--76
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Civil engineering Department, Shoolini University, Solan, Himachal Pradesh, India
  • Soil science Department, College of Agriculture, Lorestan University, Iran
autor
  • Public Agency "National Scientific and Research Institute of Industrial Safety and Occupational Safety and Health", Kyiv, Ukraine
autor
  • Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
  • Civil Engineering Department, National Institute of Kurukshetra, Haryana, India
autor
  • Civil engineering Department, Shoolini University, Solan, Himachal Pradesh, India
Bibliografia
  • [1] United Nations, Dryland degradation keeping hundreds of millions in poverty, Press Release: Secretariat of the United Nations Convention to Combat Desertiûcation Geneva, Switzerland, 1997.
  • [2] P.K. Shit, A.S. Nandi, G.S. Bhunia, Soil erosion risk mapping using RUSLE model on Jhargram subdivision at West Bengal in India, Modeling Earth Systems and Environment 1/3 (2015) 28. DOI: https://doi.org/10.1007/s40808-015-0032-3
  • [3] B.N. Goswami, G. Wu, T. Yasunari, The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon, Journal of Climate 19/20 (2006) 5078-5099. DOI: https://doi.org/10.1175/JCLI3901.1
  • [4] A.I.J.M. Van Dijk, L.A. Bruijnzeel, R.A. Vertessy, J. Ruijter, Runoff and sediment generation on bench terraced hillsides: measurements and upscaling of a field based model, Hydrological Processes: An International Journal 19/8 (2005) 1667-1685. DOI: https://doi.org/10.1002/hyp.5629
  • [5] O. Kisi, A. Guven, A machine code-based genetic programming for suspended sediment concentration estimation, Advances in Engineering Software 41/7-8 (2010) 939-945. DOI: https://doi.org/10.1016/j.advengsoft.2010.06.001
  • [6] H.M. Nagy, K.A.N.D. Watanabe, M. Hirano, Prediction of sediment load concentration in rivers using artificial neural network model, Journal of Hydraulic Engineering 128/6 (2002) 588-595. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(588)
  • [7] A.M. Melesse, S. Ahmad, M.E. McClain, X. Wang, Y. H. Lim, Suspended sediment load prediction of river systems: An artificial neural network approach, Agricultural Water Management 98/5 (2011) 855-866. DOI: https://doi.org/10.1016/j.agwat.2010.12.012
  • [8] Z.A. Boukhrissa, K. Khanchoul, Y. Le Bissonnais, M. Tourki, Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria, Journal of Earth System Science 122/5 (2013) 1303-1312. DOI: https://doi.org/10.1007/s12040-013-0347-2
  • [9] H. Bouzeria, A.N. Ghenim, K. Khanchoul, Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria, Journal of Water and Land Development 33/1 (2017) 47-55. DOI: https://doi.org/10.1515/jwld-2017-0018
  • [10] K. Roushangar, S. Shahnazi, Prediction of sediment transport rates in gravel-bed rivers using Gaussian process regression, Journal of Hydroinformatics 22/2 (2020) 249-262. DOI: https://doi.org/10.2166/hydro.2019.077
  • [11] P. Sihag, V. Kumar, F.R. Afghan, S.M. Pandhiani, A. Keshavarzi, Predictive modeling of PM 2.5 using soft computing techniques: case study - Faridabad, Haryana, India, Air Quality, Atmosphere & Health 12/12 (2019) 1511-1520. DOI: https://doi.org/10.1007/s11869-019-00755-z
  • [12] B. Singh, P. Sihag, K. Singh, S. Kumar, Estimation of trapping efficiency of a vortex tube silt ejector. International Journal of River Basin Management (published online in 2018). DOI: https://doi.org/10.1080/15715124.2018.1476367
  • [13] B. Singh, P. Sihag, K. Singh, Modelling of impact of water quality on infiltration rate of soil by random forest regression, Modeling Earth Systems and Environment 3/3 (2017) 999-1004. DOI: https://doi.org/10.1007/s40808-017-0347-3
  • [14] M.M. Saritas, A. Yasar, Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification, International Journal of Intelligent Systems and Applications in Engineering 7/2 (2019) 88-91. DOI: https://doi.org/10.18201//ijisae.2019252786
  • [15] M. Kumar, P. Sihag, N.K. Tiwari, S. Ranjan, Experimental study and modelling discharge coefficient of trapezoidal and rectangular piano key weirs, Applied Water Science 10/1 (2020) 1-9. DOI: https://doi.org/10.1007/s13201-019-1104-8
  • [16] F.B. Banadkooki, M. Ehteram, A.N. Ahmed, F.Y. Teo, M. Ebrhimi, C.M. Fai, Y.F. Huang, A. El-Shafie, Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm, Environmental Science and Pollution Research 27 (2020) 38094-38116. DOI: https://doi.org/10.1007/s11356-020-09876-w
  • [17] S.G. Meshram, V.P. Singh, O. Kisi, V. Karimi, C. Meshram, Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction, Water Resources Management 34 (2020) 4561-4575. DOI: https://doi.org/10.1007/s11269-020-02672-8
  • [18] V.H. Nhu, H. Shahabi, E. Nohani, A. Shirzadi, N. Al-Ansari, S. Bahrami, S. Miraki, M. Geertsema, H. Nguyen, Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms, ISPRS International Journal of Geo-Information 9/8 (2020) 479. DOI: https://doi.org/10.3390/ijgi9080479
  • [19] A. Sharafati, S.B.H.S. Asadollah, D. Motta, Z.M. Yaseen, Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis, Hydrological Sciences Journal 65/12 (2020) 2022-2042. DOI: https://doi.org/10.1080/02626667.2020.1786571
  • [20] J.R. Quinlan, Learning with continuous classes. Proceedings of Australian Joint Conference on Artificial Intelligence, Hobart 16-18 November 1992, vol. 92, 343-348.
  • [21] L. Breiman, Bagging predictors, Machine Learning 24/2 (1996) 123-140. DOI: https://doi.org/10.1007/BF00058655
  • [22] L. Breiman, Random forests, Machine Learning 45/1 (2001) 5-32. DOI: https://doi.org/10.1023/A:1010933404324
  • [23] A. Liaw, M. Wiener, Classification and regression by randomForest. R News 2/3 (2002) 18-22.
  • [24] A.K. Prabhakar, K.K. Singh, A.K. Lohani, S.K. Chandniha, Study of Champua watershed for management of resources by using morphometric analysis and satellite imagery, Applied Water Science 9/5 (2019) 127. DOI: https://doi.org/10.1007/s13201-019-1003-z
  • [25] V.C. Msadala, G.R. Basson, Revised regional sediment yield prediction methodology for ungauged catchments in South Africa, Journal of the South African Institution of Civil Engineering 59/2 (2017) 28-36. DOI: http://dx.doi.org/10.17159/2309-8775/2017/v59n2a4
  • [26] M.R.U. Mustafa, M.H. Isa, R.R. Bhuiyan, Prediction of river suspended sediment load using radial basis function neural network - a case study in Malaysia. Proceedings of the 2011 National Postgraduate Conference, Perak, Malaysia, 2011, 1-4. DOI: https://doi.org/10.1109/NatPC.2011.6136377
  • [27] V. Nourani, G. Andalib, Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches, Journal of Mountain Science 12/1 (2015) 85-100. DOI: https://doi.org/10.1007/s11629-014-3121-2
  • [28] E. Toriman, O. Jaafar, R. Maru, A. Arfan, A.S. Ahmar, Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network, Journal of Physics: Conference Series 954/1 (2018) 012030. DOI: https://doi.org/10.1088/1742-6596/954/1/012030
  • [29] M.B. Baniya, T. Asaeda, K.C. Shivaram, S.M. Jayashanka, Hydraulic Parameters for Sediment Transport and Prediction of Suspended Sediment for Kali Gandaki River Basin, Himalaya, Nepal, Water 11/6 (2019) 1229. DOI: https://doi.org/10.3390/w11061229
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4054430f-26b1-4d3d-b29f-a480a05bfec6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.