PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simulation study of a missile cold launch system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the missile flight dynamics during the launch phase is studied. The main concept behind this work was to use a vertical cold launch system and the rapid pitch maneuver to achieve longer missile range and better firing coverage. A set of a small pulse rocket engines was used to obtain the desired missile attitude. The physical and mathematical models of the missile are described. The pulse jets control algorithm is presented. The computer program of the missile model has been developed in the Simulink environment. The missile behavior in the low-speed flight envelope has been examined. The results of numerical simulations in the form of the graphs are presented. It has been obtained that there exist several benefits of the cold launch method as increased range and higher target kill probability.
Słowa kluczowe
Rocznik
Strony
901—913
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
Bibliografia
  • 1. Baranowski L., 2013, Numerical testing of flight stability of spin-stabilized artillery projectiles, Journal of Theoretical and Applied Mechanics, 51, 2, 375-385
  • 2. Blakelock J., 1991, Automatic Control of Aircraft and Missiles, New York, NY, John Wiley & Sons, Inc.
  • 3. Despirito J., 2013, Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflow, Army Research Laboratory
  • 4. Fenghua H., Kemao M., Yu Y., 2008, Firing logic optimization design of lateral jets in missile attitude control systems, 17th IEEE International Conference on Control Applications, San Antonio
  • 5. Fleeman E., 2006, Missile Design and System Engineering, AIAA Distinguished Lecture
  • 6. Maher K., 2002, PRODAS V3 – Technical Manual, Arrow Tech
  • 7. MBDA Systems, 2014, MBDA – Common Anti-air Modular Missile (CAMM), Retrieved from https://youtu.be/Nnb20mrT1kw
  • 8. TOR-M1 9A331 (SA-15 Gauntlet) surface-to-air missile, 2012, Retrieved from https://www.youtube.com/watch?v=qcC0rXxXVNA
  • 9. Weinacht P., 2004, Lateral Control Jet Aerodynamic Predictions for a 2.75-in Rocket Testbed Munition, Army Research Laboratory
  • 10. Yuhang W., Yu Y., Kemao M., 2006, Lateral thrust and aerodynamics blended control system fesign based on variable structure model following, Intelligent Control and Automation, Dalian, 8183-8186
  • 11. Zarchan P., 2012, Tactical and Strategic Missile Guidance, American Institute of Aeronautics and Astronautics
  • 12. Zhen S., Wenqiao M., Yufang Z., Huichao H., 2012, Lateral thrust and aerodynamics compound control system of missile based on adaptive fuzzy control, Computational Intelligence and Design (ISCID), Hangzhou
  • 13. Zipfel P., 2007, Modeling and Simulation for Aerospace Vehicle Dynamics, American Institute of Aeronautics and Astronautics
  • 14. Żugaj M., Głębocki R., 2010, Model of gasodynamic control system for guided bombs, Journal of Theoretical and Applied Mechanics, 48, 1, 27-44
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-404b65c9-4e39-4fb2-b8fd-78602f3dfb3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.