PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quantum inspired chaotic salps warm optimization for dynamic optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many real-world problems are dynamic optimization problems that are un-known before hand. In practice, unpredict able events such as the arrival of new jobs, due date changes, and reservation cancellations, changes in parameters or constraints make the search environment dynamic. Many algorithms are designed to deal with stationary optimization problems, but these algorithms do not face dynamic optimization problems or manage them correctly. Although some optimization algorithms are proposed to deal with the changes in dynamic environments differently, there are still areas of improvement in existing algorithms due to limitations or drawbacks, especially in terms of locating and following the previously identified optima. With this in mind, westudied a variant of SSA known as QSSO, which integrates the principles of quantum computing. An attempt is made to improve the overall performance of standard SSA to deal with the dynamic environment effectively by locating and tracking the global optima for DOPs. This work is an extension of the proposed new algorithm QSSO, known as the Quantum-inspired Chaotic SalpSwarm Optimization (QCSSO) Algorithm, which details the various approaches considered while solving DOPs. A chaotic operator is employed with quantum computing to respond to change and guarantee to increase individual searcha-bility by improving population diversity and the speed at which the algorithm converges. We experimented by evaluating QCSSO on a well-known generalized dynamic benchmark problem (GDBG) provided for CEC 2009, followed by a comparative numerical study with well-regarded algorithms. As promised, the introduced QCSSO is discovered as the rival algorithm for DOPs.
Wydawca
Czasopismo
Rocznik
Tom
Strony
301--326
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Amity University Uttar Pradesh Noida, India
autor
  • Amity University Uttar Pradesh Noida, India
  • Amity University Uttar Pradesh Noida, India
  • California State University Dominguez Hills Carson, CA, USA
Bibliografia
  • [1] Abualigah L., Shehab M., Alshinwan M., Alabool H.: Salp swarm algorithm: a comprehensive survey, Neural Computing and Applications, vol. 32, pp. 11195–11215, 2020. doi: 10.1007/s00521-019-04629-4.
  • [2] Ateya A.A., Muthanna A., Vybornova A., Algarni A.D., Abuarqoub A., Koucheryavy Y., Koucheryavy A.: Chaotic salp swarm algorithm for SDN multicontroller networks, Engineering Science and Technology, an International Journal, vol. 22(4), pp. 1001–1012, 2019. doi: 10.1016/j.jestch.2018.12.015.
  • [3] Branke J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1875–1882, 1999. doi: 10.1109/CEC.1999.785502.
  • [4] Branke J., Kaussler H., Smidt C., Schmeck H.: A Multi-population Approach to Dynamic Optimization Problems. In: I.C. Parmee (ed.), Evolutionary Design and Manufacture. Selected Papers from ACDM ‘00, pp. 299–307, 2000. doi: 10.1007/ 978-1-4471-0519-0_24.
  • [5] Bui L.T., Abbass H.A., Branke J.: Multiobjective optimization for dynamic environments. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2349–2356, 2005. doi: 10.1109/CEC.2005.1554987.
  • [6] Carlisle A., Dozier G.: Adapting particle swarm optimization to dynamic environments. In: Proceedings of the International Conference on Artificial Intelligence, Las Vegas, NV, USA, vol. 1, pp. 429–434, 2000.
  • [7] Chen Y.R., Tsai C.W., Chiang M.C., Yang C.S.: An Improved Quantum Inspired Evolutionary Algorithm for Data Clustering. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3411–3416, 2018. doi: 10.1109/SMC.2018.00578.
  • [8] Cheng H., Yang S.: Multi-population Genetic Algorithms with Immigrants Scheme for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks. In: Applications of Evolutionary Computation. Evo Applications 2010, Lecture Notes in Computer Science, vol. 6024, pp. 562–571, 2010. doi: 10.1007/978- 3-642-12239-2_58.
  • [9] Cobb H.G.: An Investigation Into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments, 1990. NRL Memorandum Report.
  • [10] Cobb H.G., Grefenstette J.J.: Genetic algorithms for tracking changing environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, pp. 523–530, 1993.
  • [11] Grefenstette J.J.: Genetic algorithms for changing environments. In: Parallel Problem Solving from Nature, 2: Proceedings of the Second Conference on Parallel Problem Solving from Nature, Brussels, Belgium, 28–30 September 1992, pp. 137–144, 1992.
  • [12] He W., Shi Y.: Multiobjective Construction Optimization Model Based on Quantum Genetic Algorithm, Advances in Civil Engineering, vol. 2019, 5153082, 2019. doi: 10.1155/2019/5153082.
  • [13] Krishnakumar K.: Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization. In: Proceedings of SPIE 1196, Intelligent Control and Adaptive Systems, (1 February 1990), pp. 289–296, 1990. doi: 10.1117/12.969927.
  • [14] Li C., Yang S.: A clustering particle swarm optimizer for dynamic optimization. In: 2009 IEEE Congress on Evolutionary Computation, pp. 439–446, 2009. doi: 10.1109/CEC.2009.4982979.
  • [15] Li C., Yang S., Nguyen T.T., Yu E.L., Yao X., Jin Y., Beyer H., Suganthan P.N.: Benchmark Generator for CEC'2009 Competition on Dynamic Optimization, Technical Report, Brunel University London, 2008. http://bura.brunel.ac.uk/ handle/2438/5897.
  • [16] Li S., Yu Y., Sugiyama D., Li Q., Gao S.: A Hybrid Salp Swarm Algorithm With Gravitational Search Mechanism. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 257–261, 2018. doi: 10.1109/CCIS.2018.8691256.
  • [17] Liu L., Yang S., Wang D.: Particle Swarm Optimization With Composite Particles in Dynamic Environments, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40(6), pp. 1634–1648, 2010. doi: 10.1109/ TSMCB.2010.2043527.
  • [18] Mani A., Patvardhan C.: An adaptative quantum evolutionary algorithm for engineering optimization problems, International Journal of Computer Applications, vol. 1(22), pp. 43–48, 2010. doi: 10.5120/444-677.
  • [19] Manikanta G., Mani A., Singh H.P., Chaturvedi D.K.: Adaptive quantuminspired evolutionary algorithm for optimizing power losses by dynamic load allocation on distributed generators, Serbian Journal of Electrical Engineering, vol. 16(3), pp. 325–357, 2019. doi: 10.2298/SJEE1903325M.
  • [20] Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M.: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, vol. 114, pp. 163–191, 2017. doi: 10.1016/ j.advengsoft.2017.07.002.
  • [21] Nanayakkara T., Watanabe K., Izumi K.: Evolving in dynamic environments through adaptive chaotic mutation. In: Proceedings of Third International Symposium on Artficial Life and Robotics, vol. 2, pp. 520–523, 1999.
  • [22] Nguyen T.T., Yang S., Branke J.: Evolutionary dynamic optimization: A survey of the state of the art, Swarm and Evolutionary Computation, vol. 6, pp. 1–24, 2012. doi: 10.1016/j.swevo.2012.05.001.
  • [23] Oppacher F., Wineberg M.: The Shifting Balance Genetic Algorithm: improving the GA in a dynamic environment. In: GECCO‘99: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 504–510, 1999.
  • [24] Parsopoulos K.E., Vrahatis M.N.: Recent approaches to global optimization problems through Particle Swarm Optimization, Natural Computing, vol. 1, pp. 235–306, 2002. doi: 10.1023/A:1016568309421.
  • [25] Pathak S., Mani A., Sharma M., Chatterjee A.: A Novel Salp Swarm Algorithm for Controller Placement Problem. In: N. Kar, A. Saha, S. Deb (eds.), Trends in Computational Intelligence, Security and Internet of Things. ICCISIoT 2020. Communication in Computer and Information Science, vol. 1358, pp. 24–36, 2020. doi: 10.1007/978-3-030-66763-4_3.
  • [26] Pathak S., Mani A., Sharma M., Chatterjee A.: A New Salp Swarm Algorithm for the Numerical Optimization Problems Based on An Elite Opposition-based Learning, 2021 Asian Conference on Innovation in Technology (ASIANCON), pp. 1–6, 2021. doi: 10.1109/ASIANCON51346.2021.9544105.
  • [27] Pathak S., Mani A., Sharma M., Chatterjee A.: A New Quantum-Inspired Salp Swarm Optimization Algorithm for Dynamic Optimization Problem, 2022 IEEE 19th India Council International Conference (INDICON), pp. 1–8, 2022. doi: 10.1109/INDICON56171.2022.10040211.
  • [28] Sayed G.I., Khoriba G., Haggag M.H.: A novel chaotic salp swarm algorithm for global optimization and feature selection, Applied Intelligence, vol. 48, pp. 3462–3481, 2018. doi: 10.1007/s10489-018-1158-6.
  • [29] Sayed G.I., Khoriba G., Haggag M.H.: Hybrid Quantum Salp Swarm Algorithm for Contrast Enhancement of Natural Images, International Journal of Intelligent Engineering & Systems, vol. 12, pp. 225–235, 2019. doi: 10.22266/ ijies2019.1231.22.
  • [30] Sun J., Feng B., Xu W.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 1, pp. 325–331, 2004. doi: 10.1109/ CEC.2004.1330875.
  • [31] Sun J., Xu W., Feng B.: A global search strategy of quantum-behaved particle swarm optimization. In: IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116, 2004. doi: 10.1109/ICCIS.2004.1460396.
  • [32] Vavak F., Jukes K.A., Fogarty T.C.: Performance of a Genetic Algorithm with Variable Local Search Range Relative to Frequency of the Environment Changes. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, July 22–25, 1998, University of Wisconsin, Madison, Wisconsin, pp. 602–608, Morgan Kaufmann, San Francisco, CA, 1998.
  • [33] Xiao B., Wang R., Xu Y., Song W., Wang J., Wu Y.: Salp swarm algorithm based on particle-best. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 1383–1387, 2019. doi: 10.1109/ITNEC.2019.8729243.
  • [34] Xiao B., Wang R., Xu Y., Wang J., Song W., Deng Y.: Simplified Salp Swarm Algorithm. In: 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), pp. 226–230, 2019. doi: 10.1109/ ICAICA.2019.8873515.
  • [35] Xing Z., Jia H.: Multilevel Color Image Segmentation Based on GLCM and Improved Salp Swarm Algorithm, IEEE Access, vol. 7, pp. 37672–37690, 2019. doi: 10.1109/ACCESS.2019.2904511.
  • [36] Yang S.: On the Design of Diploid Genetic Algorithms for Problem Optimization in Dynamic Environments. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1362–1369, 2006. doi: 10.1109/CEC.2006.1688467.
  • [37] Yang S., Richter H.: Hyper-learning for population-based incremental learning in dynamic environments. In: 2009 IEEE Congress on Evolutionary Computation, pp. 682–689, 2009. doi: 10.1109/CEC.2009.4983011.
  • [38] Yang S., Tinos R.: Hyper-Selection in Dynamic Environments. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3185–3192, 2008. doi: 10.1109/CEC.2008.4631229.
  • [39] Yang S., Yao X.: Population-Based Incremental Learning With Associative Memory for Dynamic Environments, IEEE Transactions on Evolutionary Computation, vol. 12(5), pp. 542–561, 2008. doi: 10.1109/TEVC.2007.913070.
  • [40] Yazdani D., Akbarzadeh-Totonchi M.R., Nasiri B., Meybodi M.R.: A new artificial fish swarm algorithm for dynamic optimization problems. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8, 2012. doi: 10.1109/ CEC.2012.6256169.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40497cc6-6094-4720-ac7c-6e69e5073c3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.