PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CV19T, a novel bio-socially inspired method, belonging to a new nature-inspired metaheuristics class

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents CV19T, a novel bio-socially inspired metaheuristic, where the cornerstone on which rests is the relationship between humans crowding density, on one side, influenced by their mobility, mutual attractiveness to each other and individual consciousness, and on the other side, the amazing speed of COVID-19 propagation. CV19T originality resides in the fact of combining features from two completely distinct and famous classes, namely: swarm intelligence and Evolutionary Algorithms. Moreover, CV19T extends elitism concept (i.e. survival of the most powerful), on which are based courant evolutionist approaches to the survival of the most beneficial one. Also, CV19Tshows that additional parameters can increase control of its behaviour, in many cases, leading to rise in its results relevance. To validate CV19T, it was tested on benchmarks set, including 23 functions (unimodal, multimodal and fixeddimensional multimodal) and 4 real-world problems.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
351--396
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
  • Mustapha Ben Boulaid University, Computer Science Departement, Mathematics and Computer Science Faculty, Batna, Algeria
  • Mustapha Ben Boulaid University, LAMIE laboratory, Computer Science Departement, Mathematics and Computer Science Faculty, Batna, Algeria
autor
  • Mustapha Ben Boulaid University, Computer Science Departement, Mathematics and Computer Science Faculty, Batna, Algeria
Bibliografia
  • [1] Ajani S.N., Khobragade P., Dhone M., Ganguly B., Shelke N., Parati N.: Advancements in Computing: Emerging Trends in Computational Science with Next-Generation Computing, International Journal of Intelligent Systems and Applications in Engineering, vol. 12(7S), pp. 546–559, 2024. https://ijisae.org/ index.php/IJISAE/article/view/4159.
  • [2] Al-Betar M.A., Alyasseri Z.A.A., Awadallah M.A., Abu Doush I.: Coronavirus herd immunity optimizer (CHIO), Neural Computing and Applications, vol. 33, pp. 5011–5042, 2021. doi: 10.1007/s00521-020-05296-6.
  • [3] Alatas B.: A novel chemistry based metaheuristic optimization method for mining of classification rules, Expert Systems with Applications, vol. 39(12), pp. 11080–11088, 2012. doi: 10.1016/j.eswa.2012.03.066.
  • [4] Alhijawi B., Awajan A.: Genetic algorithms: theory, genetic operators, solutions, and applications, Evolutionary Intelligence, vol. 17, pp. 1245–1256, 2024. doi: 10.1007/s12065-023-00822-6.
  • [5] Ariyaratne A., Ilankoon I., Samarasinghe U., Silva R.: Finding Playing Styles of Badminton Players Using Firefly Algorithm Based Clustering Algorithms: Finding Playing Styles of Badminton Players Using FA Varients, Computer Science, vol. 24(3), 2023. doi: 10.7494/csci.2023.24.3.5116.
  • [6] Bhandari S., Sahay K.B., Singh R.K.: Optimization Techniques in Modern Times and Their Applications. In: 2018 International Electrical Engineering Congress (iEECON), pp. 1–4, 2018. doi: 10.1109/IEECON.2018.8712308.
  • [7] Binitha S., Sathya S.S.: A Survey of Bio inspired Optimization Algorithms, International Journal of Soft Computing and Engineering, vol. 2(2), pp. 137–151, 2012. https://www.ijsce.org/portfolio-item/B0523032212/.
  • [8] Blum C., Roli A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Computing Surveys (CSUR), vol. 35(3), pp. 268–308, 2003. doi: 10.1145/937503.937505.
  • [9] Chakraborty A., Kar A.K.: Swarm Intelligence: A Review of Algorithms. In: Nature-Inspired Computing and Optimization: Theory and Applications, pp. 475–494, Springer, 2017. doi: 10.1007/978-3-319-50920-4 19.
  • [10] Chola Raja K., Kannimuthu S.: Deep learning-based feature selection and prediction system for autism spectrum disorder using a hybrid meta-heuristics approach, Journal of Intelligent & Fuzzy Systems, vol. 45(1), pp. 797–807. doi: 10.3233/jifs-223694.
  • [11] Conway B.A., Paris S.W.: Spacecraft Trajectory Optimization Using Direct Transcription and Nonlinear Programming. In: B.A. Conway (ed.), Spacecraft Trajectory Optimization, pp. 37–78, Cambridge Aerospace Series, Cambridge University Press, 2010. doi: 10.1017/CBO9780511778025.004.
  • [12] De Le´on-Aldaco S.E., Calleja H., Alquicira J.A.: Metaheuristic optimization methods applied to power converters: A review, IEEE Transactions on Power Electronics, vol. 30(12), pp. 6791–6803, 2015. doi: 10.1109/tpel.2015.2397311.
  • [13] Deb K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: L. Wang, A.H.C. Ng, K. Deb (eds.), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34, Springer, London, 2011. doi: 10.1007/978-0-85729-652-8 1.
  • [14] Dehghani M., Trojovsk`y P.: Osprey optimization algorithm: A new bioinspired metaheuristic algorithm for solving engineering optimization problems, Frontiers in Mechanical Engineering, vol. 8, 1126450, 2023. doi: 10.3389/ fmech.2022.1126450.
  • [15] Dhief I., Feroskhan M., Alam S., Lilith N., Delahaye D.: Meta-Heuristics Approach for Arrival Sequencing and Delay Absorption Through Automated Vectoring. In: 2023 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, IEEE, 2023. doi: 10.1109/cec53210.2023.10254077.
  • [16] Dorigo M., Birattari M., St¨utzle T.: Ant colony optimization, IEEE Computational Intelligence Magazine, vol. 1(4), pp. 28–39, 2006. doi: 10.1109/ MCI.2006.329691.
  • [17] Fan Y., Zhao K., Shi Z.L., Zhou P.: Bat coronaviruses in China, Viruses, vol. 11(3), 210, 2019. doi: 10.3390/v11030210.
  • [18] Forrest S.: Genetic algorithms, ACM Computing Surveys (CSUR), vol. 28(1), pp. 77–80, 1996. doi: 10.1145/234313.234350.
  • [19] Ghadimi N., Yasoubi E., Akbari E., Sabzalian M.H., Alkhazaleh H.A., Ghadamyari M.: SqueezeNet for the forecasting of the energy demand using a combined version of the sewing training-based optimization algorithm, Heliyon, 2023. doi: 10.1016/j.heliyon.2023.e16827.
  • [20] Gomes R., Vieira D., de Castro M.F.: Application of Meta-Heuristics in 5G Network Slicing: A Systematic Review of the Literature, Sensors, vol. 22(18), 6724, 2022. doi: 10.3390/s22186724.
  • [21] Gonz´alez M.C., Hidalgo C.A., Barab´asi A.L.: Understanding individual human mobility patterns, Nature, vol. 458(7196), pp. 779–782, 2008. doi: 10.1038/ nature07850.
  • [22] Grishin I.Y., Timirgaleeva R.R.: Air navigation: Optimisation control ofmeans cueing of the air-traffic control system. In: 2017 21st Conference of Open Innovations Association (FRUCT), pp. 134–140, IEEE, 2017. doi: 10.23919/ fruct.2017.8250175.
  • [23] Han M., Du Z., Yuen K.F., Zhu H., Li Y., Yuan Q.: Walrus optimizer: A novel nature-inspired metaheuristic algorithm, Expert Systems with Applications, vol. 239, 122413, 2023. doi: 10.1016/j.eswa.2023.122413.
  • [24] Hannah L.A.: Stochastic optimization. In: J.D. Wright (ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition), pp. 473–481, Elsevier London, England, 2015. doi: 10.1016/b978-0-08-097086-8.42010-6.
  • [25] Harsha P., Charikar M., Andrews M., Arora S., Khot S., Moshkovitz D., Zhang L., et al.: Limits of Approximation Algorithms: PCPs and Unique Games (DIMACS Tutorial Lecture Notes), arXiv preprint arXiv:10023864, 2010. doi: 10.48550/ arXiv.1002.3864.
  • [26] Hoang T., Coletti P., Melegaro A., Wallinga J., Grijalva C.G., Edmunds J.W., Beutels P., Hens N.: A systematic review of social contact surveys to inform transmission models of close-contact infections, Epidemiology (Cambridge, Mass), vol. 30(5), 723, 2019. doi: 10.1097/ede.0000000000001047.
  • [27] Jain M., Saihjpal V., Singh N., Singh S.B.: An overview of variants and advancements of PSO algorithm, Applied Sciences, vol. 12(17), 8392, 2022. doi: 10.3390/app12178392.
  • [28] Jones S.: Germs, Genes and Genesis: The History of Infectious Disease, Gresham College, 2016.
  • [29] Karaboga D.: Artificial bee colony algorithm, Scholarpedia, vol. 5(3), 6915, 2010. doi: 10.4249/scholarpedia.6915.
  • [30] Karako K., Song P., Chen Y., Tang W.: Analysis of COVID-19 infection spread in Japan based on stochastic transition model, Bioscience trends, 2020. doi: 10.5582/ bst.2020.01482.
  • [31] Kaveh A., Akbari H., Hosseini S.M.: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems, Engineering Computations, 2020. doi: 10.1108/ec-05-2020-0235.
  • [32] Kaveh A., Bakhshpoori T.: Water evaporation optimization: a novel physically inspired optimization algorithm, Computers & Structures, vol. 167, pp. 69–85, 2016. doi: 10.1016/j.compstruc.2016.01.008.
  • [33] Kaya E., Gorkemli B., Akay B., Karaboga D.: A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems, Engineering Applications of Artificial Intelligence, vol. 115, 105311, 2022. doi: 10.1016/j.engappai.2022.105311.
  • [34] Kennedy J., Eberhart R.: Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, 1995. doi: 10.1109/ICNN.1995.488968.
  • [35] Khalid A.M., Hosny K.M., Mirjalili S.: COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle, Neural Computing and Applications, vol. 34(24), pp. 22465–22492, 2022. doi: 10.1007/ s00521-022-07639-x.
  • [36] Krasovskii A.A., Taras’ev A.M.: Dynamic optimization of investments in the economic growth models, Automation and Remote Control, vol. 68(10), pp. 1765–1777, 2007. doi: 10.1134/S0005117907100050.
  • [37] Lam A.Y.S., Li V.O.K.: Chemical-reaction-inspired metaheuristic for optimization, IEEE Transactions on Evolutionary Computation, vol. 14(3), pp. 381–399, 2009. doi: 10.1109/tevc.2009.2033580.
  • [38] Lotfi M., Hamblin M.R., Rezaei N.: COVID-19: Transmission, prevention, and potential therapeutic opportunities, Clinica Chimica Acta, vol. 508, pp. 254–266, 2020. doi: 10.1016/j.cca.2020.05.044.
  • [39] Naruei I., Keynia F.: A new optimization method based on COOT bird natural life model, Expert Systems with Applications, vol. 183, 115352, 2021. doi: 10.1016/ j.eswa.2021.115352.
  • [40] Parejo J.A., Ruiz-Cort´es A., Lozano S., Fernandez P.: Metaheuristic optimization frameworks: a survey and benchmarking, Soft Computing, vol. 16, pp. 527–561, 2012. doi: 10.1007/s00500-011-0754-8.
  • [41] Piotrowski A.P., Napiorkowski M.J., Napiorkowski J.J., Rowinski P.M.: Swarm intelligence and evolutionary algorithms: Performance versus speed, Information Sciences, vol. 384, pp. 34–85, 2017. doi: 10.1016/j.ins.2016.12.028.
  • [42] Rezvanian A., Mehdi Vahidipour S., Sadollah A.: An Overview of Ant Colony Optimization Algorithms for Dynamic Optimization Problems. In: M. Andriychuk, A. Sadollah (eds.), Optimization Algorithms – Classics and Recent Advances, IntechOpen, Rijeka, 2023. doi: 10.5772/intechopen.111839.
  • [43] S¸ahin ˙I., D¨orterler M., G¨ok¸ce H.: Optimization of Hydrostatic Thrust Bearing Using Enhanced Grey Wolf Optimizer, Mechanika, vol. 25(6), pp. 480–486, 2019. doi: 10.5755/j01.mech.25.6.22512.
  • [44] Saib B., Abdessemed M.R., Hocin R., Khoualdi K.: Study of Exploration and Exploitation Mechanisms in Nature Inspired Metaheuristics for Global Optimization. In: M.R. Laouar, V.E. Balas, B. Lejdel, S. Eom, M.A. Boudia (eds.), 12th International Conference on Information Systems and Advanced Technologies “ICISAT 2022”, pp. 442–453, Springer International Publishing, Cham, 2023. doi: 10.1007/978-3-031-25344-7 41.
  • [45] Sayed S.A.F., ElKorany A., Sayed S.: Applying hunger game search (HGS) for selecting significant blood indicators for early prediction of ICU Covid-19 severity, Computer Science, vol. 24(1), pp. 113–136, 2023. doi: 10.7494/ csci.2023.24.1.4654.
  • [46] Shastri A., Nargundkar A., Kulkarni A.J.: A Brief Review of Socio-inspired Metaheuristics. In: Socio-Inspired Optimization Methods for Advanced Manufacturing Processes, pp. 19–29, Springer Series in Advanced Manufacturing, Springer, Singapore, 2021. doi: 10.1007/978-981-15-7797-0 2.
  • [47] Shial G., Sahoo S., Panigrahi S.: A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm, Computer Science, vol. 24(3), pp. 361–405, 2023. doi: 10.7494/csci.2023.24.3.4962.
  • [48] Slowik A., Kwasnicka H.: Evolutionary algorithms and their applications to engineering problems, Neural Computing and Applications, vol. 32, pp. 12363–12379, 2020. doi: 10.1007/s00521-020-04832-8.
  • [49] Stork J., Eiben A.E., Bartz-Beielstein T.: A new taxonomy of global optimization algorithms, Natural Computing, vol. 21, pp. 219–242, 2022. doi: 10.1007/s11047- 020-09820-4.
  • [50] Talbi E.G.: Metaheuristics: from design to implementation, John Wiley & Sons, 2009. doi: 10.1002/9780470496916.
  • [51] Tantithamthavorn C., McIntosh S., Hassan A.E., Matsumoto K.: Automated parameter optimization of classification techniques for defect prediction models. In: ICSE’16: Proceedings of the 38th International Conference on Software Engineering, pp. 321–332, 2016. doi: 10.1145/2884781.2884857.
  • [52] Tilahun S.L.: Balancing the Degree of Exploration and Exploitation of Swarm Intelligence Using Parallel Computing, International Journal on Artificial Intelligence Tools, vol. 28(03), 1950014, 2019. doi: 10.1142/s0218213019500143.
  • [53] Visintini A.L., Glover W., Lygeros J., Maciejowski J.: Monte Carlo optimization for conflict resolution in air traffic control, IEEE Transactions on Intelligent Transportation Systems, vol. 7(4), pp. 470–482, 2006. doi: 10.1109/ tits.2006.883108.
  • [54] Wang C., Horby P.W., Hayden F.G., Gao G.F.: A novel coronavirus outbreak of global health concern, The Lancet, vol. 395(10223), pp. 470–473, 2020. doi: 10.1016/s0140-6736(20)30185-9.
  • [55] Xing B., Gao W.J.: Imperialist Competitive Algorithm. In: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Intelligent Systems Reference Library, pp. 203–209, Springer, Cham, 2014. doi: 10.1007/978-3-319- 03404-1 15.
  • [56] Yang X.S.: Nature-inspired metaheuristic algorithms, Luniver Press, 2010.
  • [57] Yang X.S., He X.: Swarm Intelligence and Evolutionary Computation: Overview and Analysis. In: X.S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation, Studies in Computational Intelligence, vol. 585, pp. 1–23, Springer, Cham, 2015. doi: 10.1007/978-3-319-13826-8 1.
  • [58] Yin S., Luo Q., Du Y., Zhou Y.: DTSMA: Dominant swarm with adaptive t-distribution mutation-based slime mould algorithm, Mathematical Biosciences and Engineering, vol. 19(3), pp. 2240–2285, 2022. doi: 10.3934/mbe.2022105.
  • [59] Zhang H., Wang X., Memarmoshrefi P., Hogrefe D.: A survey of ant colony optimization based routing protocols for mobile ad hoc networks, IEEE Access, vol. 5, pp. 24139–24161, 2017. doi: 10.1109/access.2017.2762472.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40481035-4a7b-477a-97f8-a9d3dec18e46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.