PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of biological degradability of the waste produced by food industry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic waste from production processes is unutilised potential for the production of energy from renewable sources. The submitted paper studies the conditions of anaerobic degradation of selected waste from food industry (diary and distillery) when biogas is produced. Both types of organic waste have low pH values. Ash form municipal incineration as a material for the treatment of pH of waste was used. Except for the pH increase during anaerobic degradation, ash also serves as a source of macroelements for inoculum microorganisms. Kinetics of anaerobic biological digestion of organic material based on the change of pressure and biogas production depending on the ash addition (change of pH) of input samples was observed. Beside these tests, degradability of the waste was assessed by limiting biologically degradable ratio, BR and specific speed of degradability, q. pH values were adjusted with different amounts of ash (0.5; 1.8; 2.7 g/g of dry matter of organic material). Results of the research confirmed that the addition of optimum amount of ash has a positive effect on anaerobic degradation of organic materials.
Rocznik
Strony
339--354
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
  • Department of Environmental Engineering, Technical University Zvolen, T.G. Masaryka 24, Zvolen 960 01, Slovakia, phone: +421-45-520 61 11, +421-45-533 00 27
  • Department of Environmental Engineering, Technical University Zvolen, T.G. Masaryka 24, Zvolen 960 01, Slovakia, phone: +421-45-520 61 11, +421-45-533 00 27
  • Department of Environmental Engineering, Technical University Zvolen, T.G. Masaryka 24, Zvolen 960 01, Slovakia, phone: +421-45-520 61 11, +421-45-533 00 27
  • Institute of Foreign Languages, Technical University Zvolen, T.G. Masaryka 24, Zvolen 960 01, Slovakia, phone: +421-45-520 61 11, +421-45-533 00 27
Bibliografia
  • [1] Directive EU 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001.
  • [2] Van D, Fujuwara T, Leu Tho B, Toan P, Minh G. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ Eng Res. 2020;25(1):1-17. DOI: 10.4491/eer.2018.334.
  • [3] Appels L, Lauwers J, Degréve J, Helsen L, Lievens B, Willems K. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sust Energy Rev. 2011;15(9):4295-301. DOI: 10.1016/j.rser.2011.07.121.
  • [4] Shahbaz M, Ammar M, Zou D, Korai RM, Li X. An insight into the anaerobic co-digestion of municipal solid waste and food waste: influence of co-substrate mixture ratio and substrate to inoculum ratio on biogas production. Appl Biochem Biotechnol. 2019;187(4):1356-70. DOI: 10.1007/s12010-018-2891-3.
  • [5] Geršl M, Kanduč T, Matýsek D, Šotnar M, Mareček J. The role of mineral phases in the biogas production technology. Ecol Chem Eng S. 2018;25(1):51-9. DOI: 10.1515/eces-2018-0003.
  • [6] Komilis D, Barrena R, Grando RL, Vogiatzi V, Sánchez A, Font X. A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield. Rev Environ Sci Biotechnol. 2017;16(2):347-60. DOI: 10.1007/s11157-017-9428-z.
  • [7] Braber K. Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough. Biomass Bioenergy. 1995; 9(1-5):365-76. DOI: 10.1016/0961-9534(95)00103-4.
  • [8] Wrońska I, Cybulska K. Quantity and quality of biogas produced from the poultry sludge optimized by filamentous fungi. Ecol Chem Eng. S. 2018;25(3):395-404. DOI: 10.1515/eces-2018-0027.
  • [9] Gruber-Brunhumer MR, Montgomery M, Nussbaumer M, Schoeppa T, Zohard E, Mucciod M, et al. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. J Biotechnol. 2019;295:80-9. DOI: 10.1016/j.jbiotec.2019.02.004.
  • [10] Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L. The anaerobic digestion of solid organic waste. Waste Manage. 2011;31(8):1737-44. DOI: 10.1016/j.wasman.2011.03.021.
  • [11] Panigrahi S, Dubey B. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy. 2019;143:779-97. DOI: 10.1016/j.renene.2019.05.040.
  • [12] Andersen L, Lamp A, Dieckmann C, Baetge S, Schmidt L, Kaltschmitt M. Biogas plants as key units of biorefinery concepts: Options and their assessment. J Biotechnol. 2018; 283:130-9. DOI: 10.1016/j.jbiotec.2018.07.041.
  • [13] Angelidaki I, Ellegaard L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Appl Biochem Biotechnol. 2003;109(1-3):95-106. DOI: 10.1385/ABAB:109:1-3:95.
  • [14] Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev. 2011;15(1):821-6. DOI: 10.1016/j.rser.2010.07.042.
  • [15] Wilkie CA, Riedesel KJ, Owens MJ. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy. 2000;19(2):63-102. DOI: 10.1016/S0961-9534(00)00017-9
  • [16] Moestedt J, Påledal S, Schnürer A, Nordell E. Biogas production from thin stillage on an industrial scale - Experience and optimisation. Energies. 2013;6(11):5642-55. DOI: 10.3390/en6115642.
  • [17] Drosg B, Fuchs W, Meixner K, Waltenberger R, Kirchmayr R, Braun R et al. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants. Water Sci Technol. 2013;67(3):494-505. DOI: 10.2166/wst.2012.574.
  • [18] Oh ST, Martin AD. Glucose contents in anaerobic ethanol stillage digestion manipulate thermodynamic driving force in between hydrogenophilic and acetoclastic methanogens. Chem Eng J. 2014;243:526-36. DOI: 10.1016/j.cej.2013.12.085.
  • [19] Fuess LT, Garcia ML. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J Environ Manage. 2015;162:102-14. DOI: 10.1016/j.jenvman.2015.07.046.
  • [20] Schmidt T, Pröter J, Scholwin F, Nelles M. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenergy. 2013;55:285-90. DOI: 10.1016/j.biombioe.2013.02.010.
  • [21] Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: Characterization and treatment. Sci Total Environ. 2013;385-96. DOI: 10.1016/j.scitotenv.2012.12.038.
  • [22] Perle M, Kimchie S, Shelef G. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 1995;29(6):1549-54. DOI: 10.1016/0043-1354(94)00248-6.
  • [23] Damasceno FRC, Freire DMG, Cammarota MC. Impact of the addition of an enzyme pool on an activated sludge system treating dairy wastewater under fat shock loads. J Chem Technol Biotechnol. 2008;83(5):730-8. DOI: 10.1002/jctb.1863.
  • [24] Erdirencelebi D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: influence of recycle. J Chem Technol Biotechnol. 2011;86(4):525-33. DOI: 10.1002/jctb.2546.
  • [25] Tawfik A, Sobhey M, Badawy M. Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination. 2008;227(1-3):167-77. DOI: 10.1016/j.desal.2007.06.023.
  • [26] Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A. Study on biogas production by anaerobic digestion of garden-waste. Fuel. 2012;95:495-8. DOI: 10.1016/j.fuel.2011.11.006.
  • [27] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol. 2008;99(10):4044-64. DOI: 10.1016/j.biortech.2007.01.057.
  • [28] Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM. The influence of pH on hydrolysis and acidogenesis ofkitchen wastes in two-phase anaerobic digestion. Environ Technol. 2005;26(3):329-40. DOI: 10.1080/09593332608618563.
  • [29] Latif MA, Mehta CM, Batstone DJ. Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 2017;113:42-9. DOI: 10.1016/j.watres.2017.02.002.
  • [30] Lin JG, Chang CN, Chang SC. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresour Technol. 1997;62(3):85-90. DOI: 10.1016/S0960-8524(97)00121-1.
  • [31] Salehian P, Karimi K, Zilouei H, Jeihanipour A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel. 2013;106:484-9. DOI: 10.1016/j.fuel.2012.12.092.
  • [32] Ali S, Hua B, Huang JJ, Droste RL, Zhou Q, Zhao W, et al. Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresour Technol. 2019;289. DOI: 10.1016/j.biortech.2019.121579.
  • [33] Gupta VK, Mittal A, Malviya A, Mittal J. Adsorption of carmoisine A from wastewater using waste materials - Bottom ash and deoiled soya. J Colloid Interface Sci. 2009;335(1):24-33. DOI: 10.1016/j.jcis.2009.03.056.
  • [34] Yin C, Shen Y, Zhu N, Huang Q, Lou Z, Yuan H. Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration. Appl Energy. 2018;215:503-11. DOI: 10.1016/j.apenergy.2018.02.056.
  • [35] Fialová J, Hybská H, Mitterpach J, Samešová D, Kovalíček J, Surový J. et al. Bottom ash from municipal solid waste incineration. Basic parameters and ecotoxicological properties. Environ Prot Eng. 2019;45(3):113-26. DOI: 10.37190/epe190308.
  • [36] ISO 10390:2005. Soil quality - Determination of pH. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=99350.
  • [37] EN 14346. Characterization of waste - Calculation of dry matter by determination of dry residue or water content, 2006, 24. Available from: https://www.en-standard.eu/din-en-14346-characterization-of-wastecalculation-of-dry-matter-by-determination-of-dry-residue-or-water-content/.
  • [38] EN 15169:2007. Characterization of waste - Determination of loss on ignition in waste, sludge and sediments. Available from: https://www.en-standard.eu/din-en-15169-characterization-of-wastedetermination-of-loss-on-ignition-in-waste-sludge-and-sediments/.
  • [39] ISO 6060:1989. Water quality. Determination of the chemical oxygen demand. Available from: https://www.iso.org/standard/12260.html.
  • [40] ISO 5815:1989 (modified) Water quality. Determination of biochemical oxygen demand after n days (BODn). Part 2: Method for undiluted samples. Available from: https://v1.cecdn.yun300.cn/site_1809120263/ISO%2005815-2-20031547185585637.pdf.
  • [41] EN 15309:2007. Characterization of waste and soil - Determination of elemental composition by X-ray fluorescence. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=104563.
  • [42] EN 16192:2012. Characterization of waste. Analysis of eluates. Available from: https://www.en-standard.eu/din-en-16192-characterization-of-waste-analysis-of-eluates/.
  • [43] EN ISO 11734:1998. Water quality. Evaluation of the "ultimate" anaerobic biodegradability of organic compounds in digested sludge. Method by measurement of the biogas production. Available from: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=79120.
  • [44] Sayedin F, Kermanshahi-Pour A, He QS. Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio. Renew Energy. 2019;135:975-83. DOI: 10.1016/j.renene.2018.12.084.
  • [45] Comino E, Riggio VA, Rosso M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol. 2012;114:46-53. DOI: 10.1016/j.biortech.2012.02.090.
  • [46] Kavacik B, Topaloglu B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy. 2010;34(9):1321-9. DOI: 10.1016/j.biombioe.2010.04.006.
  • [47] Lo HM, Kurniawan TA, Sillanpää MET, Pai TY, Chiang CF, Chao KP, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour Technol. 2010;101(16):6329-35. DOI: 10.1016/j.biortech.2010.03.048.
  • [48] Yin C, Shen Y, Yu Y, Yuan H, Lou Z, Zhu N. In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen Adaption and CO2 sequestration. Bioresour Technol. 2019;282:1-8. DOI: 10.1016/j.biortech.2019.02.110.
  • [49] Lo HM, Chiu HY, Lo SW, Lo FC. Effects of different SRT on anaerobic digestion of MSW dosed with various MSWI ashes. Bioresour Technol. 2012;125:233-8. DOI: 10.1016/j.biortech.2012.08.084.
  • [50] Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008;99(17):7928-40. DOI: 10.1016/j.biortech.2008.02.044.
  • [51] Latif MA, Mehta CM, Batstone DJ. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res. 2015;81:288-93. DOI: 10.1016/j.watres.2015.05.062.
  • [52] Ponsá S, Ferrer I, Vázquez F, Font X. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge: Influence of pH and solid content. Water Res. 2008; 42(14):3972-80. DOI: 10.1016/j.watres.2008.07.002.
  • [53] Sanberg M, Ahring BK. Anaerobic treatment of fish meal process wastewater in a UASB reactor at high pH. Appl Microbiol Biotechnol. 1992;36(6):800-4. DOI: 10.1007/BF00172198.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4047068c-733e-49c4-9433-5c5df0c49a25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.