PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of reference plane impact on longitudinal moment of inertia and the moment to change trim in naval architecture

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical approach to evaluating ship waterplane hydrostatic parameters. The analysis focuses mainly on determining the longitudinal moment of inertia, computed relative to both the aft perpendicular and the midship section. This study is performed for a 9000 DWT general cargo ship with a design draught of 7.5 m. The results show small differences in the longitudinal moment of inertia (IL), which subsequently affect the moment-to-change trim (MTC). However, the study demonstrates that these differences, resulting from the selected point of origin, have a negligible impact on trim calculations. Despite minor mathematical discrepancies, their overall effect is insignificant, with IL deviations within ±0.1%, confirming that these variations do not influence practical trim calculations.
Słowa kluczowe
Rocznik
Strony
200--208
Opis fizyczny
Bibliogr. 32 poz. rys., tab.
Twórcy
  • Gdynia Maritime University, Faculty of Navigation 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. Abdulghany, A.R. (2017) Generalization of parallel axis theorem for rotational inertia. American Journal of Physics 85, pp. 791–795, doi: 10.1119/1.4994835.
  • 2. Ban, D. & Bašić, J. (2015) Analytical Solution of Basic Ship Hydrostatics Integrals Using Polynomial Radial Basis Functions. Brodogradnja/Shipbilding 66 (3), pp. 15– 37.
  • 3. Barrass, C.B. & Derrett, D.R. (2006) Ship Stability for Masters and Mates. 6th edition. Elsevier.
  • 4. Biran, A. (2019) Geometry for naval architects. Butterworth-Heinemann, an imprint of Elsevier: Oxford Cambridge.
  • 5. Biran, A.B. (2003) Ship Hydrostatics and Stability. Butterworth-Heinemann.
  • 6. Biran, A. & López-Pulido, R. (2014) Numerical Integration in Naval Architecture. In Ship Hydrostatics and Stability. Elsevier, pp. 77–96, doi: 10.1016/B978-0-08-098287- 8.00003-7.
  • 7. Biran, A. & López-Pulido, R. (2024) Ship hydrostatics and stability. Third edition; Butterworth-Heinemann.
  • 8. Dudziak, J. (2008) Teoria okrętu. Wyd. 2. popr. i uzup. Gdańsk: Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej.
  • 9. Epperson, J.F. (2021) An Introduction to Numerical Methods and Analysis: Solutions Manual to Accompany. Wiley, doi: 10.1002/9781119604570.
  • 10. Gross, D., Hauger, W., Schröder, J., Wall, W.A. & Bonet, J. (2018) Engineering Mechanics 2: Mechanics of Materials 2. 2nd ed. Springer Berlin Heidelberg, doi: 10.1007/978-3-662-56272-7.
  • 11. Hahn, B.H. & Valentine, D.T. (2017) Introduction to Numerical Methods. In: Essential MATLAB for Engineers and Scientists. Elsevier, pp. 295–323, doi: 10.1016/B978-0-08- 100877-5.00016-5.
  • 12. Hassan, Md.T. (2025) The Art and Science of Ship Lines Plan. SSRN Electronic Journal, doi: 10.2139/ssrn.5184744.
  • 13. Joshi, R., Han, S.-B., Cho, W.-K. & Kim, D.-H. (2022) The role of cellular traction forces in deciphering nuclear mechanics. Biomaterials Research 26 (1), 43, doi: 10.1186/ s40824-022-00289-z.
  • 14. Kabaciński, J. (1993) Stateczność i niezatapialność statku. Szczecin: Maritime University of Szczecin.
  • 15. Karnevich, V.V. (2021) Hydrodynamic surfaces with midsection in the form of Lame curve. RUDN Journal of Engineering Researches 22, pp. 323–328, doi: 10.22363/2312- 8143-2021-22-4-323-328.
  • 16. Korkmaz, K.B., Werner, S. & Bensow, R. (2023) Investigations on experimental and computational trim optimisation methods. Ocean Engineering 288, 116098, doi: 10.1016/j. oceaneng.2023.116098.
  • 17. Leader, J.J. (2022) Numerical Analysis and Scientific Computation. 2nd ed. New York: Chapman and Hall/CRC, doi: 10.1201/9781003042273.
  • 18. Lee, B.S. (2019) Hydrostatics and Stability of Marine Vehicles: Theory and Practice. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping; Springer Singapore, Vol. 7, doi: 10.1007/978- 981-13-2682-0.
  • 19. Levis, E.V. (ed.) (1988) Principles of naval architecture. Volume I. Stability and strength. Jersey City, NJ: The Society of Naval Architects and Marine Engineers.
  • 20. Martić, I., Degiuli, N., Grlj, C.G., Borčić, K., Andrišić, J. & Lalović, I. (2024) Impact of the Longitudinal Center of Buoyancy on the Total Resistance of a Passenger Ship. Journal of Marine Science and Engineering 12, 1749, doi: 10.3390/jmse12101749.
  • 21. Molland, A.F. (ed.) (2008) Glossary of terms and definitions. In: The Maritime Engineering Reference Book. Elsevier, pp. 876–886, doi: 10.1016/B978-0-7506-8987- 8.00012-3.
  • 22. Nwaoha, T.C. & Idubor, F.I. (2019) Use of hybrid approach in facilitation of design of ship hydrostatic parameters under uncertainty. Journal of Mechanical and Energy Engineering 3, pp. 31–42, doi: 10.30464/jmee.2019.3.1.31.
  • 23. Papanikolaou, A. (2014) Ship Design: Methodologies of Preliminary Design. Dordrecht: Springer Netherlands, doi: 10.1007/978-94-017-8751-2.
  • 24. Puchalski, J. & Soliwoda, J. (2008) Eksploatacja Masowców. Gdynia: TRADEMAR.
  • 25. Seitaridou, E. & Farris, A.C.K. (2023) A Student’s Guide to Rotational Motion. 1st ed. Cambridge University Press, doi: 10.1017/9781009213349.
  • 26. Szozda, Z. (2006) Stateczność statku morskiego. Szczecin: Akademia Morska w Szczecinie.
  • 27. Tupper, E.C. (2013) Ship Form Calculations. In Introduction to Naval Architecture. Elsevier, pp. 33–46, doi: 10.1016/ B978-0-08-098237-3.00003-5.
  • 28. Velleman, D.J. (2005) The Generalized Simpson’s Rule. The American Mathematical Monthly 112, pp. 342–350, doi: 10.1080/00029890.2005.11920202.
  • 29. Walker, D., Leonard, M., Metcalfe, A. & Lambert, M. (2018) Engineering Modelling and Analysis. 0 ed. CRC Press, doi: 10.1201/9781315274867.
  • 30. Więckiewicz, W. (2006) Podstawy Pływalności i Stateczności statków Handlowych. Gdynia: Wydawnictwo Akademii Morskiej w Gdyni.
  • 31. Więckiewicz, W. & Kucharski, S. (1997) Geometria i Obliczenia Hydrostatyczne Kadłuba Statku. Gdynia: Wydawnictwo Uczelnianie WSM Gdynia.
  • 32. Yang, Y., Shu, Y., Li, G., Du, L. & Guo, H. (2025) Research and implementation of an online platform for efficient and accurate ship hull design. Advances in Engineering Software 202, 103870, doi: 10.1016/j.advengsoft.2025.103870.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-403c3640-0e7e-414d-b3b8-54fd4b1bbbc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.