PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deceleration and deformation during dynamic load of model longitudinals – real conditions and simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manner and degree of taking over impact energy by the passive safety elements of the vehicle body is the basis for providing conditions for the survival of people using the means of transport (driver and passengers). The elements specially designed for this purpose in the self-supporting body are longitudinals. Their energy-absorbing properties are designed by using a specific shape, by using appropriate connections of their components and by choosing the right material. Determining the degree to which the vehicle (body) ensures safety during collision requires testing. The most complex and expensive tests are the ones carried out on a complete real object (whole vehicle). The solution worth considering is a bench test of individual body elements designed as energy-consuming (for example, longitudinals). In addition, it is also possible to carry out computer simulations in this area. The purpose of this article was to present and compare the results of dynamic studies on model energy-consuming real objects and compare the results obtained this way with the results of computer simulation in the same range. The scope of work was adopted on this basis: passive safety, model energy-absorbing elements of steel self-supporting vehicle body, dynamic tests, computer simulations. For the purpose of this study, a model of vehicle passive safety elements (model longitudinals) was designed for which dynamic tests were carried out on a specially designed test stand (speed of the hammer was up to 9.7 m/s, impact energy was up to 23.6 kJ). This test stand enabled registration of the deceleration during impact and deformation of the tested object. Next, computer simulations were carried out for geometrically and material-identical models. On the basis of the conducted tests, it was found that it is worth considering the replacement of collision tests of the whole vehicle by tests of its individual components. These tests can also be supported by computer simulations.
Rocznik
Tom
Strony
53--64
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Faculty of Transport, The Silesian University of Technology, no. 8 Krasińskiego Street, 40-019 Katowice, Poland
autor
  • Faculty of Transport, The Silesian University of Technology, no. 8 Krasińskiego Street, 40-019 Katowice, Poland
autor
  • Faculty of Transport, The Silesian University of Technology, no. 8 Krasińskiego Street, 40-019 Katowice, Poland
autor
  • Faculty of Transport, The Silesian University of Technology, no. 8 Krasińskiego Street, 40-019 Katowice, Poland
Bibliografia
  • 1. Romaniszyn K.M. 2006. „Wpływ struktury przodu nadwozia na energochłonność”. [In Polish: „The influence of the structure of the front of a car chassis on its energy dissipation”]. Zeszyty Naukowe Politechniki Świętokrzyskiej, Mechanika z. 84: 287-292.
  • 2. Baranowski P., R. Burdzik, J. Piwnik. 2011. „Measure and analysis of crash vehicle deformation”. Aparatura Badawcza i Dydaktyczna 16(1): 11-16.
  • 3. Gill A. 2001. „Ocena skuteczności działania elementów bezpieczeństwa biernego samochodów osobowych na podstawie wyników badań zderzeniowych”. [In Polish: “Efficiency assessment of passive safety elements in passengers cars on the base of crash tests results”]. Zeszyty Naukowe Politechniki Poznańskiej, Maszyny Robocze i Transport 53: 117-123.
  • 4. TopSpeed. Available at: http://www.topspeed.com/cars.
  • 5. Arai Y., K. Yamazaki, K. Mizuno, H. Kubota. „Full-width tests to evaluate structural interaction”. 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV). Lyon , France, 2007-6-18 to 2007-6-21. Paper Number 07-0195.
  • 6. Technical data and training materials of Citroen, Model C8, PSA 2006.
  • 7. Kobus W. 1987. Nowe metody napraw nadwozi samochodów osobowych. [In Polish: New methods for repairing passenger car bodywork]. WKił: Warsow.
  • 8. Song H.W., Z.M. Wan, Z.M. Xie, X.W. Du. 2000. “Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes”. International Journal of Impact Engineering 24(4): 385-401.
  • 9. Juntikka R., S. Hallstrom. 2004. „Weight-balanced drop test method for characterization of dynamic propertiesof cellular materials”. International Journal of Impact Engineering 30(5): 541-554.
  • 10. Peroni L., M. Avalle, G. Belingardi. 2008. „Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques”. International Journal of Impact Engineering 36(3): 498-511.
  • 11. Tobota A., J. Karliński, A. Kopczyński. 2007. „Axial crushing of monotubal and bitubal circular foam-filled sections”. Journal of Achievements in Materials and Manufacturing Engineering 22(2): 71-74.
  • 12. Dahil L. 2017. “Effect on the vibration of the suspension system”. Metalurgija 56(3-4): 375-378.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40394833-6791-4384-9cc1-c530527ed95f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.